光学 精密工程, 2022, 30 (18): 2267, 网络出版: 2022-10-27  

使用改进型大气散射模型的双阶段图像修复

Two-stage image restoration using improved atmospheric scattering model
作者单位
1 上海工程技术大学 电子电气工程学院,上海20620
2 中国科学院 上海光学精密机械研究所,上海01800
摘要
针对在雾霾天气、水下和夜间环境中获得的图像存在清晰度和对比度下降以及色彩失真等问题,提出一种使用改进型大气散射模型的双阶段图像修复方法。通过在传统的大气散射模型中引入一个全局补偿系数以得到一个改进型大气散射模型,使用该模型的双阶段图像修复方法包含两个阶段:首先,输入一张退化图像,利用改进型大气散射模型得出一张粗略的修复图像,并利用灰度世界算法求出该粗略的修复图像的反照率;其次,将反照率和第一阶段的输出图像作为输入,利用改进型大气散射模型得出最终的修复图像。实验结果表明,所提出的方法可避免图像修复的结果中存在色彩失真和色调偏暗等问题,并且具有很好的适用性,其不仅可有效实现雾霾图像去雾,也可实现水下图像修复和夜间图像增强。与当前最先进的方法相比,所提出的方法在定量和定性实验上都取得了优异的结果。
Abstract
Targeting negative effects such as clarity and contrast degradation and color distortion of images acquired in hazy weather, underwater, and in nighttime environments, a two-stage image restoration method using an improved atmospheric scattering model is proposed. A global compensation coefficient is introduced into the traditional atmospheric scattering model to obtain an improved atmospheric scattering model; the two-stage image restoration method based on this model consists of two stages. First, a degraded image is fed to the improved atmospheric scattering model to obtain a coarse restored image. The grayscale world algorithm is then used to determine the albedo of this coarse restored image. Second, the albedo and output image of the first stage are fed to the improved atmospheric scattering model to obtain the final restored image. Experimental results indicate that the proposed method can avoid the problems of color distortion and dark tones in the restored images and has good applicability. The method can effectively achieve image dehazing, underwater image restoration, and night image enhancement. The proposed method achieves excellent results in both quantitative and qualitative experiments compared with state-of-the-art methods.

1 引 言

空气中的悬浮粒子使大气光发生散射现象,导致在该环境下采集的图像质量严重退化,从而对依赖于清晰图像的计算机视觉任务产生严重的影响1-4。因此,对在恶劣条件下获得的退化图像进行修复,并改善图像的质量,具有十分重要的意义。目前,图像去雾的相关研究取得了较大进展。

传统的去雾方法5-11中,较为典型的图像增强方法包括基于Retinex理论的方法5和基于直方图均衡化6的方法等,这类方法未考虑在恶劣条件下图像的成像原理,导致获得的去雾结果中存在过度增强和色彩失真等一系列现象。He等7-8利用先验推算出物理型中的未知参数,进而求得无雾图像,由于在去雾的过程中先验具有不确定的未知因素,导致去雾结果中容易存在过饱和、偏暗、色彩失真和光晕等现象。Berman等9假设雾线由无数种颜色簇组成并提出一种非局部先验的去雾算法,但仍存在色彩失真的问题。这些基于大气散射模型的传统去雾方法取得了长足的发展,但基于此方法得到的去雾结果中存在色彩失真和色调偏暗的问题,这是由于引入的先验知识具有不适用性,导致图像去雾过程中放大了噪声。

近年来,深度学习被研究者广泛应用于计算机视觉任务。如被应用于基于深度学习的去雾方法12-16,在这类去雾方法中,Li等12和Cai等13使用深度学习的方法直接估算大气散射模型中的未知参数,以用于求解无雾图像,这类方法的去雾结果存在细节丢失和色彩失真。与这两种方法不同的是,Qu等14的去雾方法不需要估算大气散射模型中的未知参数,而是直接采取有雾图像到无雾图像转换的策略,避免了因估算的未知参数不准确所带来的负面影响,即使如此,其去雾结果中仍存在色彩失真和色调偏暗的问题。基于深度学习的去雾方法在去雾效果上优于传统的去雾方法,但深度学习的去雾方法也存在不足,其在学习的过程中,由于数据集中所包含的特征信息与真实世界雾霾图像中的特征信息有所差异,导致从数据集中学习到的特征信息与真实世界中的雾霾图像不完全符合,造成对雾霾图像的去雾结果中存在雾残留、色彩失真和色调偏暗等问题。

综上所述,传统的去雾方法和基于深度学习的去雾方法能够在一定程度上实现雾霾图像去雾,但去雾结果中存在色调偏暗、色彩失真和光晕等问题。此外,这些方法仅能用于图像去雾,而不能实现水下图像修复和夜间图像增强。Dong等17指出低照度图像的表征图像和直方图表征,与雾霾图像具有很高的相似度。因此可以寻找出一种适用性较强的图像修复方法。

针对对比度下降、色调偏暗和色彩失真等问题,本文提出一种使用改进型大气散射模型的双阶段图像修复方法。实验结果可证明,所提出的方法具有很好的适用性,既可有效实现雾霾图像去雾,又能实现水下图像修复和夜间图像增强。所提出的方法不仅避免了最终的修复结果中存在色彩失真和色调偏暗的问题,而且在定量和定性实验上都取得了优异的结果。

2 物理模型

2.1 传统大气散射模型

目前被广泛应用于描述图像退化的大气散射模型18-20,其数学表达式为:

Icx=Jcxtx+Ac1-tx

其中:x为像素点位置,c为通道索引且cR,G,BIcx为退化后的图像,Jcx为清晰图像,Ac为全局大气光值,tx为透射率。在式(1)表示的大气散射模型中,等号右边的第一项称为直接衰减项,其描述了场景目标的反射光在传播介质中的衰减过程;等号右边的第二项称为大气光项,其描述了大气光经过空气中悬浮颗粒的散射,会导致图像发生色彩失真。通过分析式(1)可知,Icx是输入的已知图像,为了反推出清晰图像Jcx,只需求出Actx即可实现退化图像的修复。其中,透射率tx在均匀介质中可表示为:

tx=e-βdx

其中:β为大气散射系数,dx为场景深度。进一步,式(1)可表示为:

Icx=Acρxtx+Ac1-tx

其中:ρx为场景反照率,其中Acρx=Jcx

2.2 水下光学成像模型

水下光学成像模型由McGlamery21和Jaffe22正式提出。在Jaffe-McGlamery模型中,水下光学成像模型由三个分量组成:直接透射、背景透射和前向透射,其数学形式可以表示为:

Wc(x)=Fc(x)t1(x)+B(1-t1(x))+(Fc(x)t1(x))*g(x)

其中:x为像素点位置,cR,G,B为通道索引,Fc(x)为水下清晰图像,t1(x)为透射率,B为水下背景光,*为卷积算子,g(x)为点扩展函数。为避免通过估计点扩展函数来求解反卷积的数学不适定问题,研究者通常假设水下场景足够靠近相机,并忽略前项散射的影响23,因此式(4)可简单的表示为:

Wc(x)=Fc(x)t1(x)+B(1-t1(x))

此时,可以发现式(5)式(1)的大气散射模型表达形式相同,在文献[23]中也提到水下光学成像模型类似于大气散射模型。基于水下光学成像模型的水下图像修复方法,亦需要通过强有力的假设或先验来估计水下光学成像模型的两个未知参数:透射率t1(x)和水下背景光B。在文献[17]中提到低照度图像的表征图像和直方图表征,与雾霾图像具有很高的相似度,又因为水下退化图像和夜间模糊图像都属于低照度图像,使得设计出一种适用性较强的图像修复方法成为了可能。本文对大气散射模型进行改进,并使用该改进型大气散射模型设计了一种双阶段图像修复方法。

2.3 改进型大气散射模型

基于传统大气散射模型的传统修复方法一般是通过引入先验知识求解该模型中的两个未知参数:透射率和全局大气光值,这些方法得到的结果普遍存在对比度下降、色调偏暗以及色彩失真等问题。根本原因是虽然传统大气散射模型中入射的大气光是个常数,但大气光对不同的场景具有不同的照明效果,因为不同场景中的物体具有不同的纹理密度,而光又可以在纹理中被吸收,光吸收率会随纹理密度而发生变化,造成场景色调或明或暗和对比度下降。在文献[24]中,通过在石墨烯上引入无序的纳米纹理来实现光捕获,这在微观水平上增加了光吸收率。同样地,在宏观视图中,亦是纹理密度越高光吸收率越大。由文献[25]可知,退化图像中的场景深度越小,纹理密度越丰富,其光吸收率越大,由于基于传统大气散射模型的修复方法没有对传统的大气散射模型进行改进以避免场景中物体纹理密度对光吸收的负面影响,导致得到的修复结果对比度低且整体色调偏暗,尤其是场景深度小的区域色调最暗。传统大气散射模型的第二项称为大气光项,描述了空气中悬浮的粒子会对周围的环境光进行散射造成色彩失真,且色彩失真程度与场景深度相关26。因此,为解决对比度下降、色调偏暗以及色彩失真等负面问题,本文首先改进传统的大气散射模型,在传统大气散射模型中引入一个全局补偿系数ux来削弱场景中物体的纹理密度对光吸收率的影响以及空气中悬浮的粒子会对周围的环境光进行散射造成色彩失真的影响。改进后的大气散射模型可以用数学形式表示为:

Icx=Acρxtx+uxAc1-tx

根据文献[26]可知,场景深度的变化会对修复结果产生不同程度的影响。场景深度越大修复结果中越容易存在色彩失真以及色调偏暗等问题,为避免这种影响,根据实验经验,引入一个小于1的全局补偿系数ux,其数学表达形式为:

ux=dxdmaxx

通过联立式(2)、(6)和(7)可得到本文所提出的改进型大气散射模型的数学表达为:

Icx=Acρxtx+lntxlntminAc1-tx

该改进型模型是基于传统大气散射模型进行改进的,因此根据文献[23]可知,该改进型大气散射模型同样与水下光学成像模型极为相似。根据文献[17]可知,水下图像和夜间图像的表征图像及直方图表征与雾霾图像具有很高的相似度,所以该改进型大气散射模型亦可用于水下图像和夜间图像的修复。因此,可提出一种适用性较好的图像修复方法,通过大量实验证明,其既可应用于雾霾天气又可应用于水下,甚至黑夜,同时可以避免修复结果中存在对比度下降、色调偏暗和色彩失真等问题。

3 使用改进型大气散射模型的双阶段图像修复方法

前面的工作已经得到改进型大气散射模型如式(8)所示。进一步分析式(8)可知:Icx是已知的退化图像,Ac则可以通过四叉树法27求得,根据文献[28ρx近似取值为0.5。此时,公式(8)中还存在两个未知参数txtmin。不难发现,式(8)中存在对数函数,为了简化对txtmin的求解,根据文献[28]对其进行拟合分析得到:

lntxftx=z1z2+tx

其中:z1=-0.397z2=0.07747时,对数函数与有理函数的拟合程度最好。通过联立式(8)和(9)可得到简化后的数学表示形式为:

-Ac2lntmintx2+Icxz2lntmin-Acz1+Icxlntmin-Ac2z2lntmin+Acz1tx=0,

式(10)中,若将tmin看作一个常数,则式(8)是一个关于tx的一元二次方程。因此,只需要求出tmin就可轻而易举地求得透射率tx。为便于求解tmin,结合黄金分割法设计一个求取tmin的全局搜索方法(Global Search, GS, fGS),该方法可通过数学形式表示为:

tmin=fGSAc,Icx,Jcx,Ndarkx,ρx,z1,z2,H,W

其中:HW表示图像的尺寸大小,Ndarkx=minyΩxmincR,G,BNcyΩx是以像素点x为中心的局部块。tmin通过该方法求得后,便可求得透射率tx,为使图像过度的比较平滑同时保持图像的边缘信息,受文献[29]和[30]启发,本文使用引导滤波8进一步细化透射率并得到最终的透射率tx

通过联立式(3)、(8)和(9)可得到清晰图像Jcx的数学表达形式为:

Jcx=Icx-Acz11-txz2+txlntmin1tx

在前面的描述中,式中未知量Ac,ρx,txtmin均可被求出,由此,在使用改进型大气散射模型的双阶段图像修复中,利用式(12)便可得到修复后的清晰图像Jcx。所提出的使用改进型大气散射模型的双阶段图像修复流程图如图1所示,图像修复具体包含两个阶段。

图 1. 双阶段图像修复流程图

Fig. 1. Flowchart of two-stage image restoration

下载图片 查看所有图片

首先,需要输入一张退化图像,然后利用式(12)求得粗略的清晰图像,因为在前面的处理中,为方便求取全局大气光值和透射率,根据前人的经验,反照率取值为0.5,但该取值并不适用于所有的场景,导致在部分场景下的修复结果会发生色彩失真。为了保证使用改进型大气散射模型的双阶段修复方法具有较强的适用性,既能处理雾霾图像,又能处理水下图像和夜间图像,利用灰度世界算法,求出一个较为合理的反照率,本文只需要根据灰度世界算法,便可求出该粗略的清晰图像的反照率。根据灰度世界算法31可知,我们需要先求出每个通道的平均值,然后求出每个通道的增益系数,并根据增益系数调整每个通道的分量,最后得到合理的反照率ρ(x)。由式(1)式(3)可知Acρx=Jcx,那么粗略图像对应反照率的数学形式为:

ρc'x=J'cxA'c

其中,cR,G,B为通道索引,那么粗略清晰图像的平均反照率可以表示为

ρ(x)¯=ρ'R(x)¯+ρ'G(x)¯+ρ'B(x)¯3

其中,ρ'R(x)¯ρ'G(x)¯ρ'B(x)¯是粗略清晰图像三个通道的平均反照率。根据式(13)式(14),可求出三个通道的增益系数为:

kR=ρ(x)¯ρ'R(x)¯kG=ρ(x)¯ρ'G(x)¯kB=ρ(x)¯ρ'B(x)¯

此时,可以得到粗略清晰图像的合理反照率ρ(x)为:

ρR(x)=kRρ'R(x)ρG(x)=kGρ'G(x)ρB(x)=kBρ'B(x)

因为灰度世界算法可以从图像中消除环境光的影响,所以利用灰度世界算法求得的合理的反照率ρ(x)进一步为避免修复结果中存在色彩失真提供了保证,同时保证了所提出的改进型大气散射模型的双阶段修复方法具有较强的适用性,既能处理雾霾图像,又能处理水下图像和夜间图像。

其次,将求取的合理反照率ρ(x)代入式(3)、(6)、(8)和(9)中更新参数,并将求取的四个新参数代入到式(12)中,最后该粗略的清晰图像可通过公式(12)得到最终的清晰图像。

为验证本文方法求取的合理反照率和传统方法的不同,此处进行了对比。通过式(13)可求出各方法的反照率和标准的反照率,为公平起见,在求取反照率时,统一使用RESIDE32数据集提供的标准大气光值Acx,同时为方便实验结果对比,反照率取三个通道的平均值。为证明求取合理反照率的重要性,以及本文方法与传统方法的不同,在RESIDE32数据集中随机挑选3张退化图像与传统方法进行实验对比,实验结果如图2所示。He等7方法采用的暗通道先验知识不具有普遍适用性,并未对传统的大气散射模型进行改进,使得其反照率与标准反照率差别较大,导致得到的修复结果存在对比度下降、色彩失真和色调偏暗等问题(如图2(b)所示)。Ju等28方法在图像修复的过程中反照率取常数0.5,因为不同的场景具有不同的反照率,因此其将反照率取为0.5是不合适的,且与标准反照率差别较大,造成修复的结果存在色彩失真和场景过亮等问题(如图2(c)和图2(e)所示)。从图2(d)和图2(e)中可以看出,所提出方法得到的反照率与标准反照率最为接近,此时得到的峰值信噪比(Peak Signal to Noise Ratio, PSNR)和结构相似性(Structural Similarity, SSIM)值也是最高的,说明所提出的方法得到的修复结果质量最好。因此,可以得出结论:图像修复时所求取的反照率与标准反照率越接近,得到的修复结果与标准清晰图像就越接近,同时也证明,所提出的方法得到反照率较合理,修复结果也优于传统的方法。

图 2. 在RESIDE数据集上不同算法的去雾结果

Fig. 2. Dehazing results of different algorithms on the RESIDE dataset

下载图片 查看所有图片

在后面的实验中也发现,所提出的图像修复方法确实具有很好的适用性,既能处理雾霾图像,又能处理水下图像和夜间图像,并且避免了去雾结果中存在色彩失真和整体色调偏暗,使水下图像修复的结果更符合人们眼睛看到的真实场景,而且夜间图像增强后能够呈现更多的细节信息并能实现更好的视觉效果。

4 实验结果与分析

为证明所提出的图像修复方法具有很好的适用性,并且能表现出优异的性能,分别在雾霾、水下和夜间环境下开展了的实验。在雾霾图像去雾的实验中,以DCP7、AOD-Net12、DehazeNet13、EPDN14和IDE28作为对比。使用的合成数据集是RESIDE32及其中的SOTS数据集,真实雾霾图像数据集是O-HAZE33数据集和I-HAZE34数据集。在水下图像修复的实验中,对比的四种方法包括DCP7、Fusion-based35、Retinex-based36和Red Channel37,使用的数据集是UIEB38数据集。在夜间图像增强的实验中,使用的数据均来自于互联网收集的图像。实验中采用PSNR和SSIM用于评价图像修复质量的好坏,这两个指标的数值越大,表明图像修复的质量越好。以上实验均在HP笔记本电脑上进行,电脑配置为:处理器Intel(R) Core(TM) i5-6300HQ CPU @ 2.30 GHz和8 G的RAM。

4.1 合成雾霾图像的实验结果

为验证所提出方法的有效性,实验中随机从SOTS数据集选择部分合成雾霾图像,与当前典型的五种方法对比的实验结果如图3所示。He等7和Li等12的去雾方法虽然能够实现雾霾图像去雾,但这两种方法的结果中存在图像整体色调偏暗和对比度低的问题(如图3(b)和(c)所示)。与上述两种方法相比,即使Ju等28的方法避免了去雾图像整体色调偏暗的问题,但其仍存在场景过亮和雾残留的问题(如图3(f)所示)。通过对比可发现,Cai等13的去雾方法得到的去雾结果普遍优于He等7、Li等12和Qu等14的方法,这得益于Cai等13的方法采取了基于深度学习的方法,但由于其学习到的雾霾图像的特征信息与真实世界的雾霾图像有所差异,导致去雾结果中存在雾残留(如图3(d)所示)。Qu等14的去雾方法得到的去雾结果中存在色彩失真和整体色调偏暗的问题(如图3(e)所示)。通过与当前典型的五种去雾算法的对比实验可证明,所提出的方法得到的去雾图像不仅避免了图像整体色调偏暗,也避免了色彩失真和雾残留等负面影响(如图3(g)所示)。

图 3. 在SOTS数据集上不同算法的去雾结果

Fig. 3. Dehazing results of different algorithms on the SOTS dataset

下载图片 查看所有图片

为清晰展示所提出方法的优越性,与当前典型的五种去雾算法对比的客观评价指标如表1表2所示,最优指标加粗显示。其中表1展示了在图3中使用不同去雾方法所得到的去雾图像的性能指标,表2展示了在SOTS数据集上使用不同去雾方法所得到去雾图像的性能指标的平均值。从表1可以看出,所提出的方法对SOTS数据集中随机选择的雾霾图像去雾后,所取得的PSNR值和SSIM值均为最高的,图3中的M1图像所取得的PSNR值和SSIM值分别比排名第二的高10.044 1 dB和0.049,且本文算法在其他图像上所取得的PSNR值和SSIM值也远远高于当前典型的五种去雾算法的去雾结果所取得的PSNR值和SSIM值。通过定量对比实验可得出,所提出的方法对随机选择的雾霾图像进行去雾仍具有优越性。

表 1. 图3相对应的各去雾算法去雾结果的性能指标

Table 1. Performance metrics of dehazing results of various dehazing algorithms corresponding to figure 3

MethodsPSNR/dBSSIM
M1M2M3M4M1M2M3M4
Method in Ref.[714.517 516.613 015.756 716.945 80.765 90.827 60.871 80.775 3
Method in Ref.[1216.795 419.794 615.004 722.353 80.835 00.918 20.854 00.916 7
Method in Ref.[1325.992 725.702 223.137 121.912 70.942 40.934 00.967 10.937 9
Method in Ref.[1417.620 822.227 111.287 123.464 80.845 40.894 60.403 60.936 1
Method in Ref.[2817.736 016.575 717.406 917.976 70.879 20.855 40.879 60.873 6
Proposed algorithm36.036 830.315 727.435 430.385 30.991 40.958 20.975 20.963 8

查看所有表

表 2. 在SOTS数据集上不同去雾算法去雾结果的性能指标均值

Table 2. Average performance metrics of dehazing results with different dehazing algorithms on the SOTS dataset

MethodsPSNR/dBSSIM
Method in Ref.[715.997 20.798 8
Method in Ref.[1219.147 40.878 7
Method in Ref.[1322.488 60.861 7
Method in Ref.[1419.602 40.830 1
Method in Ref.[2814.919 50.759 2
Proposed algorithm30.214 00.945 3

查看所有表

表2可清晰看出,与当前典型的五种去雾算法进行定量比较发现,所提出的方法在SOTS数据集上取得的PSNR平均值和SSIM平均值均为最高。值得一提的是,所提出的方法得到的PSNR平均值和SSIM平均值比排名第二的分别高出7.725 4 dB和0.066 6(见表2)。通过定性和定量的对比实验可得出,所提出的方法得到的去雾图像更接近标准清晰图像,图像修复的质量也是最好的,这验证了所提出的方法对于合成雾霾图像去雾的有效性。这些优势归因于所提出的改进型大气散射模型,通过在传统的大气散射模型中引入一个全局补偿系数,进而弥补了噪声对图像恢复带来的负面影响。

4.2 真实雾霾图像的实验结果

为评估所提出的方法对真实雾霾图像的去雾能力,在两个真实世界数据集上进行实验,这两个数据集分别为O-HAZE33数据集和I-HAZE34数据集。在实验中,随机在这两个数据集中各选择两张图像进行实验,分别如图4图5所示,并将所提出的方法与当前典型的五种方法的定性比较。其中,如图4和5中的(b)、(c)、(d)和(e)所示,这四种方法得到的去雾结果与标准清晰图像相比,即使在一定程度上实现了去雾,但都存在不足。这几种方法普遍存在偏暗、色彩失真、雾残留等问题。通过对比发现,Ju等28的去雾方法实现了去雾且避免了偏暗的问题,但由于其引入的光吸收系数存在缺陷,导致去雾结果中存在色彩失真且整体色调过亮(如图4(f)和图5(f)所示)。通过定性比较可知,本文所提出的方法与当前典型的五种去雾方法相比更优,所提出的方法不仅避免了去雾结果中存在的色彩失真和色调偏暗,而且与标准清晰图像也是最相似的。

图 4. 在O-HAZE数据集上不同算法的去雾结果

Fig. 4. Dehazing results of different algorithms on the O-HAZE dataset

下载图片 查看所有图片

图 5. 在I-HAZE数据集上不同算法的去雾结果

Fig. 5. Dehazing results of different algorithms on the I-HAZE dataset

下载图片 查看所有图片

为进一步清晰展示所提出的方法的优越性,与当前典型的五种去雾算法对比的客观评价指标见表3表4,其中最优指标加粗显示。其中,表3图4中不同方法得到去雾结果的PSNR值和SSIM值。表4是使用I-HAZE34数据集,各个方法得到去雾结果的PSNR平均值和SSIM平均值。从表3表4的定量对比可知,与当前典型的五种去雾算法进行定量比较,所提出的方法均取得了最高的PSNR值和SSIM值。其中,所提出的方法得到的PSNR值和SSIM值分别比排名第二的高0.800 8 dB、1.675 3 dB、0.218 7 dB和0.104 9、0.086 0、0.025 1(见表3表4)。定性和定量实验证明,所提出的方法对具有浓雾的真实雾霾图像依然具有很好的去雾能力,避免了去雾结果的色彩失真和整体色调偏暗等问题。由此,从侧面证明了所提出的方法具有很好的适用性。这些优势得益于提出的改进型大气散射模型避免了噪声光带来的负面影响;在图像修复的第一阶段,利用灰度世界算法求得的合理反照率为所提的方法具有很好的适用性提供了保障。

表 3. 与图4相对应的各去雾算法去雾结果的性能指标

Table 3. Performance metrics of dehazing results of various dehazing algorithms corresponding to Figure 4

MethodsPSNR/dBSSIM
M1M2M1M2
Method in Ref.[714.156 513.070 00.284 10.420 0
Method in Ref.[1214.831 314.235 90.401 70.494 3
Method in Ref.[1320.477 316.966 20.516 00.533 9
Method in Ref.[1414.540 415.045 30.538 50.485 0
Method in Ref.[2816.607 816.227 20.444 40.505 8
Proposed algorithm21.278 118.641 50.643 40.619 9

查看所有表

表 4. 在I-HAZE数据集上不同去雾算法去雾结果的性能指标均值

Table 4. Average performance metrics of dehazing results with different dehazing algorithms on the I-HAZE dataset

MethodsPSNR/dBSSIM
Method in Ref.[713.225 00.512 1
Method in Ref.[1214.765 60.561 6
Method in Ref.[1315.253 90.562 7
Method in Ref.[1415.008 80.566 4
Method in Ref.[2814.735 60.484 3
Proposed algorithm15.472 60.591 5

查看所有表

4.3 水下图像修复的实验结果

为进一步验证所提出的方法具有很强的适用性,在水下数据集UIEB38上进行实验,实验结果如图6所示。He等7的方法适用性不强,水下图像修复结果普遍偏暗且发生色彩失真(如图6(b)所示);同样,Fu等36的方法亦发生严重的色彩失真(如图6(d)所示)。对比分析可知,Galdran等37的方法取得不错的修复结果,但其整体清晰度下降(如图6(e)所示),Ancuti等35的方法取得较好的视觉效果,但其图像细节过渡的不够平滑(如图6(c)所示)。通过定性对比实验可知,本文所提出的方法得到最好的视觉效果,且避免修复结果中出现色彩失真和细节丢失,同时可以发现所提出的方法得到的修复结果图6(f)与标准清晰图像图6(g)最为接近。

图 6. 在UIEB数据集上不同算法的水下图像修复结果

Fig. 6. Underwater image restoration results of different algorithms on the UIEB dataset

下载图片 查看所有图片

为更深入地证明本文所提出的方法具有很好的适用性并展示算法的优越性,与当前典型的四种水下图像修复方法对比的客观评价指标见表5,其中最优指标加粗表示。所提出的方法和其他四种水下图像修复方法的结果进行定量比较发现,所提出方法的PSNR值和SSIM值均是最高的,这说明所提出的方法相比于其他四种水下图像修复方法更加优越。同时,也进一步验证了所提出的方法具有很强的适用性。这得益于所得到的改进型大气散射模型和水下光学成像模型具有高的相似性,使得所提出的使用改进型大气散射模型的双阶段图像修复方法具有很好的适用性,既能实现图像去雾,又能实现水下图像修复。

表 5. 在UIEB数据集上不同水下图像修复算法修复图像的性能指标均值

Table 5. Average performance metrics of images restored by different underwater image restoration algorithms on the UIEB dataset

MethodsPSNR/dBSSIM
Method in Ref.[713.121 30.509 0
Method in Ref.[3518.746 10.816 2
Method in Ref.[3617.790 50.621 0
Method in Ref.[3718.975 70.728 2
Proposed algorithm21.525 30.816 5

查看所有表

4.4 夜间图像增强的实验结果

通过大量实验发现,所提出的方法不仅能实现雾霾图像去雾,也能实现水下图像修复,并且均能得到优异的性能指标和不错的视觉效果。根据文献[17]可知,低照度图像的表征图像及直方图表征与雾霾图像具有很高的相似度,所以该改进型大气散射模型亦可用于夜间图像的修复。实验发现,所提出的方法确实可用于夜间图像增强,实验结果如图7所示。其中,图7中第一行是夜间图像,第二行是使用所提出的方法对夜间图像增强后的结果。经定性对比实验可发现,增强后的图像更清晰、对比度高,无色彩失真、展现出图像更多的细节。由此,更进一步证明所提出的方法的确有很强的适用性。

图 7. 夜间图像增强的结果

Fig. 7. Results of night image enhancement

下载图片 查看所有图片

5 结 论

针对传统的去雾方法和基于深度学习的去雾方法存在色彩失真、对比度下降和色调偏暗以及这些方法的适用性有限等问题,提出一种适用性强的图像修复方法——使用改进型大气散射模型的双阶段图像修复。通过引入一个全局补偿系数来弥补噪声光所带来的负面影响得到一个改进型大气散射模型,该模型避免了图像修复结果中存在的色彩失真和色调偏暗等问题。这得益于改进型大气散射模型和求取的合理反照率,使得所提出的使用改进型大气散射模型的双阶段图像修复方法具有很强的适用性。通过大量实验结果可证明,所提出的方法确实具有很好的适用性,既能有效实现雾霾图像去雾,又能实现水下图像的修复以及夜间图像增强,并且避免了最终的图像修复结果中存在色彩失真和偏暗等问题。不仅如此,所提出的方法在定量和定性实验上均取得了优异的结果。

参考文献

[1] 吕建威钱锋韩昊男. 结合天空分割和雾气浓度估计的图像去雾[J]. 光学 精密工程, 2022304): 464-477. doi: 10.37188/OPE.20223004.0464LVJ WQIANFHANH Net al. Single image dehazing with sky segmentation and haze density estimation[J]. Opt. Precision Eng., 2022304): 464-477.(in Chinese). doi: 10.37188/OPE.20223004.0464

[2] 王伟鹏项文杰戴声奎. 结合双阈值定位与透射率约束的航拍图像去雾[J]. 液晶与显示, 20203510): 1079-1086. doi: 10.37188/YJYXS20203510.1079WANGW PXIANGW JDAIS K. Aerial image defogging based on dual-threshold position and transmittance constraint[J]. Chinese Journal of Liquid Crystals and Displays, 20203510): 1079-1086.(in Chinese). doi: 10.37188/YJYXS20203510.1079

[3] 韩昊男钱锋吕建威. 图像去雾方法质量评价[J]. 光学 精密工程, 2022306): 721-733.HANH NQIANFLVJ Wet al. Image dehazing method quality assessment[J]. Opt. Precision Eng., 2022306): 721-733.(in Chinese)

[4] 冯燕茹王一斌. 物理成像模型的分解合成循环细化去雾网络[J]. 光学 精密工程, 20212911): 2692-2702. doi: 10.37188/OPE.20212911.2692FENGY RWANGY B. Dehazing using a decomposition-composition and recurrent refinement network based on the physical imaging model[J]. Opt. Precision Eng., 20212911): 2692-2702.(in Chinese). doi: 10.37188/OPE.20212911.2692

[5] 杨爱萍白煌煌. 基于Retinex理论和暗通道先验的夜间图像去雾算法[J]. 激光与光电子学进展, 2017544): 147-153. doi: 10.3788/lop54.041002YANGA PBAIH H. Nighttime image defogging based on the theory of retinex and dark channel prior[J]. Laser & Optoelectronics Progress, 2017544): 147-153.(in Chinese). doi: 10.3788/lop54.041002

[6] 董丽丽丁畅许文海. 基于直方图均衡化图像增强的两种改进方法[J]. 电子学报, 20184610): 2367-2375. doi: 10.3969/j.issn.0372-2112.2018.10.009DONGL LDINGCXUW H. Two improved methods based on histogram equalization for image enhancement[J]. Acta Electronica Sinica, 20184610): 2367-2375.(in Chinese). doi: 10.3969/j.issn.0372-2112.2018.10.009

[7] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353.

[8] HE K M, SUN J, TANG X O. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.

[9] BERMANDTREIBITZTAVIDANS. Non-local image dehazing[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. IEEE20161674-1682. doi: 10.1109/cvpr.2016.185

[10] 苏畅毕国玲金龙旭. 基于暗通道图像质心偏移量的去雾算法[J]. 光学学报, 2019395): 421-428. doi: 10.3788/aos201939.0533001SUCBIG LJINL Xet al. Dehazing algorithm based on dark-channel image centroid offset[J]. Acta Optica Sinica, 2019395): 421-428.(in Chinese). doi: 10.3788/aos201939.0533001

[11] MENGG FWANGYDUANJ Yet al. Efficient image dehazing with boundary constraint and contextual regularization[C]. 2013 IEEE International Conference on Computer Vision. Sydney, NSW, Australia. IEEE2013617-624. doi: 10.1109/iccv.2013.82

[12] LIB YPENGX LWANGZ Yet al. AOD-net: all-in-one dehazing network[C]. 2017 IEEE International Conference on Computer Vision. Venice, Italy. IEEE20174780-4788. doi: 10.1109/iccv.2017.511

[13] CAI B L, XU X M, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2016, 25(11): 5187-5198.

[14] QUY YCHENY ZHUANGJ Yet al. Enhanced Pix2pix dehazing network[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long BeachCA, USA. IEEE20198152-8160. doi: 10.1109/cvpr.2019.00835

[15] 乔丹张闯朱晨雨. 基于多尺度融合卷积神经网络的图像去雾算法[J]. 液晶与显示, 20213610): 1420-1429.QIAODZHANGCZHUC Y. Image dehazing algorithm based on multi-scale concat convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 20213610): 1420-1429.(in Chinese)

[16] 魏丙财张立晔孟晓亮. 基于深度残差生成对抗网络的运动图像去模糊[J]. 液晶与显示, 20213612): 1693-1701. doi: 10.37188/cjlcd.2021-0120WEIB CZHANGL YMENGX Let al. Motion image deblurring based on depth residual generative adversarial network[J]. Chinese Journal of Liquid Crystals and Displays, 20213612): 1693-1701.(in Chinese). doi: 10.37188/cjlcd.2021-0120

[17] DONGXWANGGPANGYet al. Fast efficient algorithm for enhancement of low lighting video[C]. 2011 IEEE International Conference on Multimedia and Expo. Barcelona. IEEE20111-6. doi: 10.1109/icme.2011.6012107

[18] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254.

[19] KOPF J, NEUBERT B, CHEN B, et al. Deep photo[J]. ACM Transactions on Graphics, 2008, 27(5): 1-10.

[20] CHENG F C, CHENG C C, LIN P H, et al. A hierarchical airlight estimation method for image fog removal[J]. Engineering Applications of Artificial Intelligence, 2015, 43: 27-34.

[21] MCGLAMERYB L. A computer model for underwater camera systems[C]. Proc SPIE 0208, Ocean Optics VI19800208221-231. doi: 10.1117/12.958279

[22] JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 1990, 15(2): 101-111.

[23] LIANG Z, WANG Y F, DING X Y, et al. Single underwater image enhancement by attenuation map guided color correction and detail preserved dehazing[J]. Neurocomputing, 2021, 425: 160-172.

[24] HU H M, ZHANG H D, ZHAO Z C, et al. Adaptive single image dehazing using joint local-global illumination adjustment[J]. IEEE Transactions on Multimedia, 2020, 22(6): 1485-1495.

[25] JU M Y, DING C, GUO C A, et al. IDRLP: image dehazing using region line prior[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2021, 30: 9043-9057.

[26] ZHANG X S, YU Y B, YANG K F, et al. A fish retina-inspired single image dehazing method[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(4): 1875-1888.

[27] WANG W C, YUAN X H, WU X J, et al. Fast image dehazing method based on linear transformation[J]. IEEE Transactions on Multimedia, 2017, 19(6): 1142-1155.

[28] JU M Y, DING C, REN W Q, et al. IDE: image dehazing and exposure using an enhanced atmospheric scattering model[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2021, 30: 2180-2192.

[29] 王凯李志伟朱成德. 基于二次引导滤波的局部立体匹配算法[J]. 激光与光电子学进展, 2019568): 116-122. doi: 10.3788/lop56.081004WANGKLIZ WZHUC Det al. Local stereo matching algorithm based on secondary guided filtering[J]. Laser & Optoelectronics Progress, 2019568): 116-122.(in Chinese). doi: 10.3788/lop56.081004

[30] 何惜琴陈冬冬. 基于YUV颜色模型与导向滤波的图像去雾算法[J]. 液晶与显示, 2021368): 1166-1173. doi: 10.37188/CJLCD.2020-0313HEX QCHEND D. Image defogging algorithm based on YUV color model and guided filtering[J]. Chinese Journal of Liquid Crystals and Displays, 2021368): 1166-1173.(in Chinese). doi: 10.37188/CJLCD.2020-0313

[31] BUCHSBAUM G. A spatial processor model for object colour perception[J]. Journal of the Franklin Institute, 1980, 310(1): 1-26.

[32] LI B, REN W, FU D, et al. Benchmarking single image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.

[33] ANCUTIC OANCUTICTIMOFTERet al. O-HAZE: a dehazing benchmark with real hazy and haze-free outdoor images[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake CityUT, USA. IEEE2018867-8678. doi: 10.1109/cvprw.2018.00119

[34] ANCUTICANCUTIC OTIMOFTERet al. I-HAZE A Dehazing Benchmark with Real Hazy and Haze-free Indoor Images[M]. Advanced Concepts for Intelligent Vision Systems. ChamSpringer International Publishing2018620-631. doi: 10.1007/978-3-030-01449-0_52

[35] ANCUTICANCUTIC OHABERTet al. Enhancing underwater images and videos by fusion[C]. 2012 IEEE Conference on Computer Vision and Pattern Recognition. ProvidenceRIUSA. IEEE201281-88. doi: 10.1109/cvpr.2012.6247661

[36] FUX YZHUANGP XHUANGYet al. A retinex-based enhancing approach for single underwater image[C]. 2014 IEEE International Conference on Image Processing. Paris, France. IEEE20144572-4576. doi: 10.1109/icip.2014.7025927

[37] GALDRAN A, PARDO D, PICÓN A, et al. Automatic Red-Channel underwater image restoration[J]. Journal of Visual Communication and Image Representation, 2015, 26: 132-145.

[38] LI C, GUO C, REN W, et al. An underwater image enhancement benchmark dataset and beyond[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2019: 2019.

张楠楠, 李志伟, 郭新军, 肖新杰, 阮昊. 使用改进型大气散射模型的双阶段图像修复[J]. 光学 精密工程, 2022, 30(18): 2267. Nannan ZHANG, Zhiwei LI, Xinjun GUO, Xinjie XIAO, Hao RUAN. Two-stage image restoration using improved atmospheric scattering model[J]. Optics and Precision Engineering, 2022, 30(18): 2267.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!