大气与环境光学学报, 2022, 17 (1): 160, 网络出版: 2022-03-04  

气溶胶组分反演方法光学辐射产品精度的综合分析

Evaluation of accuracy of aerosol optical and radiative products retrieved by aerosol component method
作者单位
1 中国气象科学研究院, 中国气象局大气化学重点开放实验室, 北京 100081
2 法国里尔大学大气光学实验室, 里尔 59000, 法国
摘要
基于 2005-2013 年 POLDER-3 多角度偏振观测资料, 通过最新开发的可以实现气溶胶光学特性及组分信息同时反演的气溶胶组分卫星反演方法获得全球气溶胶综合产品, 并利用 AERONET (Aerosol Robotic Network) 全球站点观测资料对反演获得的气溶胶光学辐射特性产品进行了综合评价分析, 讨论了气溶胶组分反演方法的适用性和先进性。结果表明, 气溶胶组分反演方法应用于多角度偏振观测中, 不仅可以获得高精度的多个波段气溶胶光学厚度 (AOD) 产品, 还可以获得多个波段吸收性气溶胶光学厚度 (AAOD) 以及不同波段组合下 (440/670 nm, 670/870 nm, 870/1020 nm, 440/1020 nm) ngstrm 指数 (AE) 等气溶胶光学辐射特性产品, 并且这些气溶胶光学特性反演产品都具有较小偏差, 表明气溶胶组分反演方法能够更好地对观测数据实现拟合, 获得更丰富更精确的气溶胶卫星反演产品, 为进一步优化算法并提供更加精确的卫星产品奠定基础。
Abstract
Based on the POLDER-3 multi-angle polarimetric observation data from 2005 to 2013, the global aerosol comprehensive products are obtained through the newly developed aerosol component method which enables simultaneous inversion of aerosol optical properties and component information, and then the AERONET (Aerosol Robotic Network) global site observation data are used to validate and comprehensively evaluate the retrieval of aerosol optical property products, and the applicability and superiority of the component retrieval approach are also discussed. The overall validation results show that the quality of spectral AOD derived by the aerosol component approach from POLDER measurements is comparable to AERONET measurements. In addition, the polarimetric observations based on aerosol component approach can provide more information on aerosol properties, such as spectral absorption AOD (AAOD) and ngstrm exponent (AE) for different band combinations (440/670 nm, 670/870 nm, 870/1020 nm, 440/1020 nm), and all these aerosol optical property products have fairly small biases, demonstrating that the algorithm is able to achieve a better fit to the observation data, which provides a basis for further improvement of the algorithm.
参考文献

[1] Anderson J O, Thundiyil J G, Stolbach A. Clearing the air: A review of the effects of particulate matter air pollution on human health [J]. Journal of Medical Toxicology, 2012, 8(2): 166-175.

[2] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response [J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D6): 6831-6864.

[3] Kampa M, Castanas E. Human health effects of air pollution [J]. Environmental Pollution, 2008, 151(2): 362-367.

[4] Zhang X Y. Aerosol over China and their climate effect [J]. Advances in Earth Science, 2007, 22(1): 12-16.

[5] Wang X, Wang C Z, Wu J, et al. Intermediate aerosol loading enhances photosynthetic activity of croplands [J]. Geophysical Research Letters, 2021, 48(7): e2020GL091893.

[6] Yang X C, Wang Y, Zhao C F, et al. Health risk and disease burden attributable to long-term global fine-mode particles [J]. Chemosphere, 2022, 287: 132435.

[7] Zhang R J, Kin-Fai H, Shen Z X. The role of aerosol in climate change, the environment, and human health [J]. Atmospheric and Oceanic Science Letters, 2012, 5(2): 156-161.

[8] Tang Y M, Deng R R, Liu Y M, et al. Research review of remote sensing for atmospheric aerosol retrieval [J]. Remote Sensing Technology and Application, 2018, 33(1): 25-34.

[9] Wang L, Zhang P, Sun L, et al. Recent researches on aerosol opacity retrieval from multi-angle satellite radiometers [J]. Remote Sensing Information, 2012, 27(1): 110-115.

[10] Levy R C, Munchak L A, Mattoo S, et al. Towards a long-term global aerosol optical depth record: Applying a consistent aerosol retrieval algorithm to MODIS and VIIRS-observed reflectance [J]. Atmospheric Measurement Techniques, 2015, 8(10): 4083-4110.

[11] Uchiyama A, Yamazaki A, Goloub P. Intercomparison between aerosol optical properties (AOP) retrieved simultaneously with a prede sky radiometer and cimel sunphotometer over Beijing, China [C]. Abstract Collection of the Third China-Korea-Japan Joint Conference on Meteorology, 2007.

[12] Kaufman Y J, Sendra C. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery [J]. International Journal of Remote Sensing, 1988, 9(8): 1357-1381.

[13] Hsu N C, Tsay S C, King M D, et al. Aerosol properties over bright-reflecting source regions [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(3): 557-569.

[14] Hsu N C, Tsay S C, King M D, et al. Deep blue retrievals of Asian aerosol properties during ACE-Asia [J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3180-3195.

[15] Sano I. Optical thickness and Angstrom exponent of aerosols over the land and ocean from space-borne polarimetric data [J]. Advances in Space Research, 2004, 34(4): 833-837.

[16] Fan X, Goloub P, Deuzé J L, et al. Evaluation of PARASOL aerosol retrieval over North East Asia [J]. Remote Sensing of Environment, 2008, 112(3): 697-707.

[17] Gu X, Cheng T, Xie D, et al. Analysis of surface and aerosol polarized reflectance for aerosol retrievals from polarized remote sensing in PRD urban region [J]. Atmospheric Environment, 2011, 45(36): 6607-6612.

[18] Dubovik O, Herman M, Holdak A, et al. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations [J]. Atmospheric Measurement Techniques, 2011, 4(5): 975-1018.

[19] Dubovik O, Lapyonok T, Litvinov P, et al. GRASP: A versatile algorithm for characterizing the atmosphere [J]. SPIE Newsroom, 2014, http://dx.doi.org/10.1117/2.1201408.005558.

[20] Chen C, Dubovik O, Fuertes D, et al. Validation of GRASP algorithm product from POLDER/PARASOL data and assessment of multi-angular polarimetry potential for aerosol monitoring [J]. Earth System Science Data, 2020, 12(4): 3573-3620.

[21] Li L, Dubovik O, Derimian Y, et al. Retrieval of aerosol components directly from satellite and ground-based measurements [J]. Atmospheric Chemistry and Physics, 2019, 19(21): 13409-13443.

[22] Zhang X D, Li L, Chen C, et al. Validation of the aerosol optical property products derived by the GRASP/Component approach from multi-angular polarimetric observations [J]. Atmospheric Research, 2021, 263: 105802.

[23] Li L, Dubovik O, Derimian Y, et al. Retrieval of aerosol components directly from satellite and ground-based measurements [J]. Atmospheric Chemistry and Physics, 2019, 19(21): 13409-13443.

[24] Holben B N, Eck T F, Slutsker I, et al. AERONET—A federated instrument network and data archive for aerosol characterization [J]. Remote Sensing of Environment, 1998, 66(1): 1-16.

[25] Giles D M, Sinyuk A, Sorokin M G, et al. Advancements in the aerosol robotic network (AERONET) Version 3 database-automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements [J]. Atmospheric Measurement Techniques, 2019, 12(1): 169-209.

[26] Bohren C F, Huffman D R. Absorption and scattering of light by small particles [M]. John Wiley & Sons, 2008.

[27] Schuster G L, Dubovik O, Holben B N, et al. Inferring black carbon content and specific absorption from aerosol robotic network (AERONET) aerosol retrievals [J]. Journal of Geophysical Research Atmospheres, 2005, 110(D10): D10S17.

[28] Ichoku C, Chu D A, Mattoo S, et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products [J]. Geophysical Research Letters, 2002, 29(12): 1616.

张馨丹, 李雷, 陈澄, 桂柯, 郑宇, 梁苑新, 要文瑞, 车慧正. 气溶胶组分反演方法光学辐射产品精度的综合分析[J]. 大气与环境光学学报, 2022, 17(1): 160. ZHANG Xindan, LI Lei, CHEN Cheng, GUI Ke, ZHENG Yu, LIANG Yuanxin, YAO Wenrui, CHE Huizheng. Evaluation of accuracy of aerosol optical and radiative products retrieved by aerosol component method[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 160.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!