激光生物学报, 2022, 31 (3): 193, 网络出版: 2022-07-25  

用于生物体内甲醛可视化检测的小分子荧光探针的研究进展

Research Progress on Small Molecule Fluorescent Probes for the Visual Detection of Formaldehyde in Organisms
赵予 1,2张涛 1,2,*
作者单位
1 华南师范大学生物光子学研究院, 激光生命科学教育部重点实验室, 广州 510631
2 华南师范大学生物光子学研究院, 广东省激光生命科学重点实验室, 广州 510631
摘要
甲醛(FA)具有高反应活性和短的检测半衰期, 广泛分布于生物体内和环境中。正常浓度范围的甲醛可以参与一碳循环, 维持人体代谢稳态, 而甲醛浓度的异常波动又会诱导机体病变, 导致一系列疾病。实时测量甲醛在活细胞和组织中的浓度、持续时间和位置, 对于破译甲醛的生理或病理功能、诊断和治疗甲醛诱发的疾病具有重要意义。有机小分子荧光探针具有灵敏度高、膜通透性好、实时原位分析、生物损伤小、操作方便等显著优势, 是能够在时间和空间上实时监测细胞内甲醛浓度与分布的一种强大的非侵入性工具。近年来, 一系列小分子荧光探针被开发出来用于生物体内甲醛的检测。本文将对这些用于生物体内甲醛可视化检测的荧光探针从识别机理(席夫碱反应、Aza-Cope重排)和荧光开启方式两方面进行阐述, 并展望甲醛荧光探针的设计和研发方向。
Abstract
Formaldehyde has high reactivity and a short detection half-life, and is widely distributed in organisms and the environment. Formaldehyde in the normal concentration range can participate in one-carbon cycle to maintain the body’s metabolic homeostasis, and abnormal fluctuations in formaldehyde concentration can induce body lesions to lead to a series of diseases. Real-time measurement of the concentration, duration and location of formaldehyde in living cells and tissues is of great significance for deciphering the physiological or pathological function of formaldehyde and diagnosing and treating formaldehyde-induced diseases. With significant advantages such as high sensitivity, good membrane permeability, real-time in situ analysis, small biological damage, and easy operation, the organic small molecule fluorescent probe is a powerful non-invasive tool that can monitor the concentration and distribution of formaldehyde in cells in real time and space. In recent years, a series of small molecule fluorescent probes have been developed for the detection of formaldehyde in living organisms. In this paper, these fluorescent probes for the visual detection of formaldehyde in organisms are summarized from recognition mechanism and fluorescence opening method these two aspects. The recognition mechanism involve Schiff base reaction, Aza-Corearrangement. And the design and development direction of formaldehyde fluorescent probes are prospected.
参考文献

[1] GARAYCOECHEA J I, CROSSAN G P, LANGEVIN F, et al. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function[J]. Nature, 2012, 489(7417): 571-575.

[2] PONTEL L B, ROSADO I V, BURGOS-BARRAGAN G, et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen[J]. Molecular Cell, 2015, 60(1): 177-188.

[3] TAN S L W, CHADHA S, LIU Y, et al. A class of environmental and endogenous toxins induces BRCA2 haploinsufficiency and genome instability [J]. Cell, 2017, 169(6): 1105-1118.

[4] TANG Y, KONG X, XU A, et al. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues[J]. Angewandte Chemie International Edition, 2016, 55(10): 3356-3359.

[5] TONG Z, HAN C, QIANG M, et al. Age-related formaldehyde interferes with DNA methyltransferase function, causing memory loss in Alzheimer’s disease[J]. Neurobiology of Aging, 2015, 36(1): 100-110.

[6] TONG Z, HAN C, LUO W, et al. Aging-associated excess formaldehyde leads to spatial memory deficits[J]. Scientific Reports, 2013, 3(1): 1-9.

[7] MEI Y, JIANG C, WAN Y, et al. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline[J]. Aging Cell, 2015, 14(4): 659-668.

[8] TULPULE K, DRINGEN R. Formaldehyde in brain: an overlooked player in neurodegeneration[J]. Journal of Neurochemistry, 2013, 127(1): 7-21.

[9] ROSADO I V, LANGEVIN F, CROSSAN G P, et al. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway[J]. Nature Structural & Molecular Biology, 2011, 18(12): 1432-1434.

[10] WU F, ZHANG Y, HUANG L, et al. A fluorescence-enhanced probe for rapid detection of formaldehyde and its application for cell imaging[J]. Analytical Methods, 2017, 9(37): 5472-5477.

[11] BURGOS-BARRAGAN G, WIT N, MEISER J, et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism[J]. Nature, 2017, 548(7669): 549-554.

[12] TSUKADA Y, FANG J, ERDJUMENT-BROMAGE H, et al. Histone demethylation by a family of JmjC domain-containing proteins[J]. Nature, 2006, 439(7078): 811-816.

[13] ZHU R, ZHANG G, JING M, et al. Genetically encoded formaldehyde sensors inspired by a protein intra-helical crosslinking reaction[J]. Nature Communications, 2021, 12(1): 1-13.

[14] PIETZKE M, BURGOS-BARRAGAN G, WIT N, et al. Amino acid dependent formaldehyde metabolism in mammals[J]. Communications Chemistry, 2020, 3(1): 1-10.

[15] THOMPSON C M, CEDER R, GRAFSTROM R C. Formaldehyde dehydrogenase: beyond phase I metabolism[J]. Toxicology Letters, 2010, 193(1): 1-3.

[16] TANG Y, ZHAO Y, LIN W. Preparation of robust fluorescent probes for tracking endogenous formaldehyde in living cells and mouse tissue slices[J]. Nature Protocols, 2020, 15(10): 3499-3526.

[17] AI L, TAN T, TANG Y, et al. Endogenous formaldehyde is a memory-related molecule in mice and humans[J]. Communications Biology, 2019, 2(1): 1-12.

[18] BI A, LIU M, HUANG S, et al. Construction and theoretical insights into the ESIPT fluorescent probe for imaging formaldehyde in vitro and in vivo[J]. Chemical Communications, 2021, 57(28): 3496-3499.

[19] SONG H, RAJENDIRAN S, KIM N, et al. A tailor designed fluorescent ‘turn-on’ sensor of formaldehyde based on the BODIPY motif[J]. Tetrahedron Letters, 2012, 53(37): 4913-4916.

[20] DING N, LI Z, HAO Y, et al. A new amine moiety-based near-infrared fluorescence probe for detection of formaldehyde in real food samples and mice[J]. Food Chemistry, 2022, 384: 132426-132426.

[21] CHEN W, HAN J, WANG X, et al. Aggregation-induced emission-based fluorescence probe for fast and sensitive imaging of formaldehyde in living cells[J]. ACS Omega, 2018, 3(10): 14417-14422.

[22] DING H, YUAN G, PENG L, et al. TP-FRET-based fluorescent sensor for ratiometric detection of formaldehyde in real food samples, living cells, tissues, and zebrafish[J]. Journal of Agricultural and Food Chemistry, 2020, 68(11): 3670-3677.

[23] CHEN H W, LI H, SONG Q H. BODIPY-substituted hydrazine as a fluorescent probe for rapid and sensitive detection of formaldehyde in aqueous solutions and in live cells[J]. ACS Omega, 2018, 3(12): 18189-18195.

[24] LIU C, JIAO X, HE S, et al. A reaction-based fluorescent probe for the selective detection of formaldehyde and methylglyoxal via distinct emission patterns[J]. Dyes and Pigments, 2017, 138: 23-29.

[25] CAI S, LIU C, JIAO X, et al. A rational design of fluorescent probes for specific detection and imaging of endogenous formaldehyde in living cells[J]. Tetrahedron, 2020, 76(45): 131617-131617.

[26] LUCERO M Y, EAST A K, REINHARDT C J, et al. Development of NIR-II photoacoustic probes tailored for deep-tissue sensing of nitric oxide[J]. Journal of the American Chemical Society, 2021, 143(18): 7196-7202.

[27] CHEN Y. Recent developments of fluorescent probes for detection and bioimaging of nitric oxide[J]. Nitric Oxide, 2020, 98: 1-19.

[28] MAO Z, JIANG H, LI Z, et al. An N-nitrosation reactivity-based two-photon fluorescent probe for the specific in situ detection of nitric oxide[J]. Chemical Science, 2017, 8(6): 4533-4538.

[29] MANNA S K, ACHAR T K, MONDAL S. Recent advances in selective formaldehyde detection in biological and environmental samples by fluorometric and colorimetric chemodosimeters[J]. Analytical Methods, 2021, 13(9): 1084-1105.

[30] ROTH A, LI H, ANORMA C, et al. A reaction-based fluorescent probe for imaging of formaldehyde in living cells[J]. Journal of the American Chemical Society, 2015, 137(34): 10890-10893.

[31] BRUEMMER K J, WALVOORD R R, BREWER T F, et al. Development of a general Aza-Cope reaction trigger applied to fluorescence imaging of formaldehyde in living cells[J]. Journal of the American Chemical Society, 2017, 139(15): 5338-5350.

[32] QUAN T, LIANG Z, PANG H, et al. A ratiometric ESIPT probe based on 2-Aza-Cope rearrangement for rapid and selective detection of formaldehyde in living cells[J]. Analyst, 2022, 147(2): 252-261.

[33] LIU Y, TENG L, XU C, et al. An integration strategy to develop dual-state luminophores with tunable spectra, large stokes shift, and activatable fluorescence for high-contrast imaging[J]. CCS Chemistry, 2021: 2156-2167.

赵予, 张涛. 用于生物体内甲醛可视化检测的小分子荧光探针的研究进展[J]. 激光生物学报, 2022, 31(3): 193. ZHAO Yu, ZHANG Tao. Research Progress on Small Molecule Fluorescent Probes for the Visual Detection of Formaldehyde in Organisms[J]. Acta Laser Biology Sinica, 2022, 31(3): 193.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!