大气与环境光学学报, 2022, 17 (3): 347, 网络出版: 2022-07-22  

基于LUR模型下PM2.5浓度的空间分布模拟分析

Simulation analysis of spatial distribution of PM2.5 concentration based on LUR model
作者单位
安徽理工大学电气与信息工程学院, 安徽 淮南 232001
摘要
PM2.5 是大气重要污染物之一, 模拟 PM2.5 浓度空间分布对于大气污染防治具有重要意义。将土地利用回归模型 (LUR) 应用到安徽省污染较重的皖北地区, 以监测点为中心, 建立半径分别为 0.5、1、1.5、2、3、4、5 km 的缓冲区, 结合土地利用因子、道路因子、污染源因子、气象因子、高程因子及人口因子共 105 个变量, 建立了该地区四季和年均 LUR 模型, 并通过留一交叉互验, 验证了模型精度。结果表明: 研究区 PM2.5 浓度受草地、湿地、降水量、相关湿度、气压、风速、二级公路、三级公路、废气污染企业、人口数量影响较大。调整 R2 分别为 0.828 (春)、0.731 (夏)、0.831 (秋)、0.775 (冬)、0.892 (年均); 均方根误差 (RMSE) 分别为 6.34 μg·m-3 (春)、7.01 μg·m-3 (夏)、6.28 μg·m-3 (秋)、6.71 μg·m-3 (冬)、5.33 μg·m-3 (年均); 模拟精度 R2 分别为 0.825 (春)、0.730 (夏)、0.834 (秋)、0.772 (冬)、0.897 (年均), 模型表现良好, 解释力强。从模拟的 PM2.5 浓度空间分布可以看出, 不同季节呈现明显不同的空间分布特征, 这与来自北方的大量污染颗粒物、当地的煤矿开采以及秋耕秸秆燃烧等潜在污染源有关。
Abstract
PM2.5 is one of the important pollutants in the atmosphere, so simulating the spatial distribution of PM2.5 concentration is of great significance to the prevention and control of air pollution. The Land Use Regression (LUR) model was applied to the heavily polluted Northern Anhui region in Anhui Province, China. Taking the monitoring points as the center, the buffer zones with radius of 0.5, 1, 1.5, 2, 3, 4 and 5 km were established respectively. Combined with 105 variables including land use factor, road factor, pollution source factor, meteorological factor, elevation factor and population factor, a four-season and annual average LUR model for this district was established, and the accuracy of the model was verified by leave-one-out cross validation. The results show that the PM2.5 concentration in the study area is greatly affected by grassland, wetland, rainfall, relative humidity, atmospheric pressure, wind speed, secondary roads,tertiary roads, air-polluting enterprise, and population. The adjusted R2 is 0.828 (spring), 0.731 (summer), 0.831 (autumn), 0.775 (winter) and 0.892 (annual average) respectively. The root mean square error (RMSE) is 6.34 μg·m-3 (spring), 7.01 μg·m-3 (summer), 6.28 μg·m-3 (autumn), 6.71 μg·m-3 (winter) and 5.33 μg·m-3 (annual average). The simulation accuracy R2 is 0.825 (spring), 0.730 (summer), 0.834 (autumn), 0.772 (winter) and 0.897 (annual average). The model shows good performance and strong explanatory power. As can be seen from the simulated spatial distribution of PM2.5 concentration, the spatial distribution characteristics in the area are obviously different in different seasons, which is related to a large number of pollution particles from the north, local coal mining, straw burning during autumn tillage and other potential pollution sources.
参考文献

[1] Guo X B, Wei H Y. Progress on the health effects of ambient PM2.5 pollution[J]. Chinese Science Bulletin, 2013, 58(13): 1171-1177.

[2] Sui W X, Wang H Y, Tang X, et al. Spatial-temporal distribution characteristics of PM2.5 and O3 over Shandong Province in 2015[J]. Environmental Monitoring in China, 2019, 35(2): 59-69.

[3] Wu J S, Wang X, Li J C, et al. Comparison of models on spatial variation of PM2.5 concentration: A case of Beijing-Tianjin-Hebei region[J]. Environmental Science, 2017, 38(6): 2191-2201.

[4] Zhang D, Woo S S. Real time localized air quality monitoring and prediction through mobile and fixed IoT sensing network[J]. IEEE Access, 2020, 8: 89584-89594.

[5] Zhao X, Hou L L, Wang X L, et al. Simulation of spatial distribution of PM2.5 and PM10 concentrations in Beijing in 2019 based on LUR model[J]. Acta Scientiae Circumstantiae, 2020, 40(11): 4060-4069.

[6] Briggs D J, Collins S, Elliott P, et al. Mapping urban air pollution using GIS: A regression-based approach[J]. International Journal of Geographical Information Science, 1997, 11(7): 699-718.

[7] Luo Y Q. Critical Issues in Land Use Regression Modeling of PM2.5 Concentration[D]. Changsha: Central South University, 2014.

[8] Hoek G, Beelen R, de Hoogh K, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution[J]. Atmospheric Environment, 2008, 42(33): 7561-7578.

[9] Tang R, Blangiardo M, Gulliver J. Using building heights and street configuration to enhance intraurban PM10, NOX, and NO2 land use regression models[J]. Environmental Science & Technology, 2013, 47(20): 11643-11650.

[10] Li J. LUR-based Analysis and Simulation of the Temporal-Spatial Characteristics of AQI in Wuhan, China[D]. Wuhan: Central China Normal University, 2017.

[11] Yang H O, Chen W B, Liang Z F. Relationship of PM2.5 concentration and land use type in Nanchang City based on LUR simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 232-239.

[12] Wang J J, Xia X S, Cheng, et al. Temporal and spatial distribution characteristics and influencing factors of PM2.5 concentration in Hefei City[J]. Resources and Environment in the Yangtze Basin, 2020, 29(06): 1413-1421.

[13] Xu G, JiaoL M, Xiao F T, et al. Applying land use regression model to estimate spatial distribution of PM2.5 concentration in Beijing-Tianjin-Hebei region[J]. Journal of Arid Land Resources and Environment, 2016, 30(10): 116-120.

[14] Gong P, Zhang W, Yu L et al. New research paradigm for global land cover mapping[J]. National Remote Sensing Bulletin 2016, 20(5): 1002-1016.

[15] Wang R Z, Hu R M, Li P F et al. Monitoring and analysis of PM2.5 concentration spatial distribution based on LUR model[J]. Chinese Journal of Environmental Engineering, 2020, 14(10): 2843-2852.

[16] Hoek G, Beelen R, Kos G, et al. Land use regression model for ultrafine particles in Amsterdam[J]. Environmental Science & Technology, 2011, 45(2): 622-628.

[17] Henderson S B, Beckerman B, Jerrett M, et al. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter[J]. Environmental Science & Technology, 2007, 41(7): 2422-2428.

[18] Wu J S, Li J C, Peng J, et al. Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China[J]. Environmental Science and Pollution Research International, 2015, 22(9): 7045-7061.

[19] Wu J S, Liao X, Peng J, et al. Simulation and influencing factors of spatial distribution of PM2.5 concentrations in Chongqing[J]. Environmental Science, 2015, 36(3): 759-767.

[20] Du B Q, Yang M L, Zhang J R. Simulation analysis of spatial distribution of PM2.5 concentration in Beijing based on the LUR model[J]. Journal of Langfang Normal University (Natural Science Edition), 2021, 21(04): 51-55.

[21] Jiang X W, Ren ZY, Sun YJ. Spatial distribution simulation and influencing factors of PM2.5 in Xi'an City based on LUR and GIS[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2017, 45(3): 80-87.

[22] Han L, Zhao J Y, Gao Y J, et al. Spatial distribution characteristics of PM2.5 and PM10 in Xi'an City predicted by land use regression models[J]. Sustainable Cities and Society, 2020, 61: 102329.

[23] Shi Y, Bilal M, Ho H C, et al. Urbanization and regional air pollution across South Asian developing countries—A nationwide land use regression for ambient PM2.5 assessment in Pakistan[J]. Environmental Pollution, 2020, 266: 115145.

[24] Wang M, Beelen R, Bellander T, et al. Performance of multi-city land use regression models for nitrogen dioxide and fine particles[J]. Environmental Health Perspectives, 2014, 122(8): 843-849.

[25] Song W Y, Yang Z, Wang P P, et al. Spatial distribution stimulation and population exposure of PM2.5 based on Land Use Regression—A case study of Hubei Province[J]. Journal of Central China Normal University (Natural Sciences), 2019, 53(3): 451-458.

[26] Li J H, Zhu S W. Cautions about R2[J]. The Journal of Quantitative & Technical Economics, 2013, 30(9): 152-160.

[27] Yuan X Y, Ye Z X, Yang H J, et al. Characteristics of fine particles in urban road atmospheric environment in Chengdu[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4598-4602.

[28] Wang Z S, Fu X, Wang Z S, et al. Research progress of the hygroscopicity of atmospheric Particles[J]. Research of Environmental Sciences, 2013, 26(4): 341-349.

[29] Gao Z X, Ye J, Zhou H G, et al. The spatial-temporal characteristics of PM2.5 and PM10 and their relationships with meteorological factors in Jiangsu Province[J]. Environmental Science & Technology, 2020, 43(7): 51-58.

[30] Luan T, Guo X L, Zhang T H, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities[J]. Journal of Applied Meteorological Science, 2019, 30(3): 279-291.

[31] Zheng Y J, Wang M M, Sun M, et al. Pollution trend and correlation analysis of PM2.5 and PM10 in Qiqihar[J]. Environmental Monitoring in China, 2018, 34(1): 60-68.

[32] Liang Z F, Chen W B, Zheng J, et al. Simulation of the distribution of main atmospheric pollutants and the influence of land use on them in central urban area of Nanchang City, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 1005-1014.

[33] Zhang H X, Cheng X F, Chen R H. Analysis on the spatial-temporal distribution characteristics and key influencing factors of PM2.5 in Anhui Province[J]. Acta Scientiae Circumstantiae, 2018, 38(3): 1080-1089.

[34] Liu Y, Wang R S Zhang Y, et al. Dust concentration distribution patterns of different particulate matter in atmosphere in a surface coal mine of Wuhai City near the Yellow River during spring[J]. Science of Soil and Water Conservation, 2020, 18(3): 1-11.

[35] Qiu Y, Wang J Q, Hu S H. Spatial-temporal distribution of PM2.5 and PM10-2.5 in Anhui Province, 2015-2016[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(1): 113-118.

[36] Chen X, Du P, Guan Q, et al. Application of ICP-MS and ICP-AES for studying on source apportionment of PM2.5 during haze weather in urban Beijing[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1724-1729.

杨明亮, 朱宗玖. 基于LUR模型下PM2.5浓度的空间分布模拟分析[J]. 大气与环境光学学报, 2022, 17(3): 347. YANG Mingliang, ZHU Zongjiu. Simulation analysis of spatial distribution of PM2.5 concentration based on LUR model[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 347.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!