硅酸盐学报, 2021, 49 (12): 2667, 网络出版: 2022-02-11  

高延性水泥基复合材料裂纹桥联应力与裂纹张开关系

Crack Bridging Stress-Crack Opening Relationship for High Ductility Cementitious Composites
吴建东 1郭丽萍 1,2,3,*丁聪 1
作者单位
1 东南大学材料科学与工程学院,南京 211189
2 江苏省土木工程材料重点实验室,南京 211189
3 先进土木工程材料协同创新中心,南京 211189
摘要
基于单丝短切纤维在细观尺度从硬化基体中拔出的特性,考虑了界面化学键、潜在纤维脱黏断裂、潜在纤维滑移断裂和滑移硬化界面特性,对高延性水泥基复合材料(HDCC)设计理论的裂纹桥联应力-裂纹张开关系(σB-δ σB-δ关系)进行了系统分析和理论推导,并建立了σB-δ 关系模型。通过实验测试数据对建立的模型进行了验证,发现σB-δ 关系模型预测的有关复合材料特性,如抗拉强度和破坏后平均裂纹张开度与实验结果具有良好的一致性。
Abstract
The interface chemical bond, potential fiber de-bonding fracture, potential fiber slip fracture and slip hardening interface characteristics were concerned based on the micron-scale pull-out characteristics of single staple fiber from the hardened matrix. The crack bridging stress-crack (σB-δ )opening relationship based on high ductility cementitious composite (HDCC) design theory was analyzed, and the (σB-δ )relation model of HDCC was proposed. In addition, the established model was verified by the experimental test data, indicating that the properties (i.e., tensile strength and average crack opening after failure) of HDCC predicted by the model are in reasonable agreement with the experimental results.
参考文献

[1] LI V C, WANG Y, BACKER S. A micromechanical model of tension- softening and bridging toughening of short random fiber reinforced brittle matrix composites[J]. J Mech Phys Solids, 1991, 39(5): 607-625.

[2] PEREIRA E B, FISCHER G, BARROS J A O. Direct assessment of tensile stress-crack opening behavior of strain hardening cementitious composites (SHCC)[J]. Cem Concr Res, 2012, 42(6): 834-846.

[3] XU S, WANG N. Flexural behaviors of RC beams strengthened with post-poured UHTCC layer[J]. Adv Mater Res, 2010, 150-151: 6-9.

[4] LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. J Eng Mech, 1992, 118(11): 2246-2264.

[5] LI V C, STANG H, KRENCHEL H. Micromechanics of crack bridging in fibre-reinforced concrete[J]. Mater Struct, 1993, 26(8): 486-494.

[6] MAALEJ M, LI V C, HASHIDA T. Effect of fiber rupture on tensile properties of short fiber composites[J]. J Eng Mech, 1995, 121(8): 903-913.

[7] LIN Z, LI V C. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces[J]. J Mech Phys Solids, 1997, 45(5): 763-787.

[8] SAHMARAN M, LI V C. De-icing salt scaling resistance of mechanically loaded engineered cementitious composites[J]. Cem Concr Res, 2007, 37(7): 1035-1046.

[9] LI Q, HUANG B, XU S, et al. Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility[J]. Cem Concr Res, 2016, 90: 174-183.

[10] HUI M, QIAN S, ZHANG Z, et al. Tailoring engineered cementitious composites with local ingredients[J]. Constr Build Mater, 2015, 101: 584-595.

[11] KANDA T, LI V C. Multiple cracking sequence and saturation in fiber reinforced cementitious composites[J]. Concr Res Tech, 1998, 9(2): 1-15.

[12] LI V C. Advances in ECC research[J]. ACI Spec Public, 2002, 206: 373-400.

[13] KANDA T, LI V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC[J]. J Adv Concr Tech, 2006, 4(1): 59-72.

[14] LIN Z, KANDA T, LI V C. On interface property characterization and performance of fiber-reinforced cementitious composites[J]. Concr Sci Eng, 1999, 1(1): 173-184.

[15] KANDA T, LI V C. Effect of fiber strength and fiber-matrix interface on crack bridging in cement composites[J]. J Eng Mech, 1999, 125(3): 290-299.

[16] KANDA T, LI V C. Interface property and apparent strength of high-strength hydrophilic fiber in cement matrix[J]. J Mater Civ Eng, 1998, 10(1): 5-13.

[17] LI V C, WANG Y, BACKER S. Effect of inclining angle, bundling, and surface treatment on synthetic fiber pull-out from a cement matrix[J]. Compos, 1990, 21(2): 132-140.

[18] DING C, GUO L, CHEN B. Theoretical analysis on optimal fiber-matrix interfacial bonding and corresponding fiber rupture effect for high ductility cementitious composites[J]. Constr Build Mater, 2019, 223: 841-851.

[19] KAN L, WANG W, LIU W, et al. Development and characterization of fly ash based PVA fiber reinforced Engineered Geopolymer Composites incorporating metakaolin[J]. Cem Concr Compos, 2020, 108: 103521.

[20] Amfa B, WANG M, CHEN J, et al. Experimental and numerical study on tensile behavior of surface modified PVA fiber reinforced strain-hardening cementitious composites (PVA-SHCC)[J]. Constr Build Mater, 2019, 217: 403-415.

[21] AYU J, CHEN X, LEUNG C K Y. Micromechanical modeling of crack-bridging relations of hybrid-fiber strain-hardening cementitious composites considering interaction between different fibers[J]. Constr Build Mater, 2018, 182: 629-636.

吴建东, 郭丽萍, 丁聪. 高延性水泥基复合材料裂纹桥联应力与裂纹张开关系[J]. 硅酸盐学报, 2021, 49(12): 2667. WU Jiandong, GUO Liping, DING Cong. Crack Bridging Stress-Crack Opening Relationship for High Ductility Cementitious Composites[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2667.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!