量子电子学报, 2022, 39 (1): 142, 网络出版: 2022-03-01  

基于缺陷镜的空心结构光束直接产生研究

Research on direct generation of hollow structured laser beam based on a spot defect mirror
作者单位
1 厦门大学电子科学与技术学院, 福建 厦门 361005
2 泉州师范学院光子技术研究中心, 福建 泉州 362000
摘要
空心光束是一种重要的结构光, 是光场调控研究领域的热点之一。拉盖尔-高斯光束是一种典型的空心光束, 因其螺旋状相位且携带轨道角动量, 因而也被称为涡旋光。涡旋光在光通信、量子纠缠和超分辨成像等领域有着极高的应用价值。本研究以全固态两镜凹平腔 Nd: YVO4 激光器作为实验平台, 通过在输出平面镜上制造点缺陷, 达到抑制低阶高斯模式起振, 从而获得高阶拉盖尔-高斯涡旋激光输出的效果。在连续波情况下, 最高获得了 16 阶涡旋激光输出; 在吸收功率为 3.3 W 时, 获得最高功率为 280 mW, 激光斜效率为 18.6%。进一步通过在谐振腔中插入 Cr:YAG 可饱和吸收体, 首次演示了具有正反手性的拉盖尔-高斯同时被动调 Q 脉冲激光, 稳定输出的最短脉冲宽度约为 232 ns, 相应的脉冲重复频率约为 229.1 kHz。本研究表明点缺陷镜是一种稳定可靠的直接产生高阶涡旋光的手段, 并且可以与被动调 Q 等固体激光技术结合产生不同运转方式的空间结构光束。
Abstract
Hollow beam is an important structured light and also one of the hot research topics in the field of light field manipulation. As a typical hollow beam, Laguerre-Gaussian beam is also named vortex beam because of its helical phase. Moreover, because of carrying orbital angular momentum, vortex beam is tremendously valuable in optical communication, quantum entanglement and super-resolution imaging. In this work, based on the all-solid-state two-mirror concave-plane Nd:YVO4 laser experimental platform,the continuous-wave 16th-order vortex laser is obtained by fabricating some spot defects onto the output coupler to suppress the low-order Gaussian mode and force the operation of high-order Laguerre-Gaussian vortex laser. A maximum output power of 280 mW is achieved with a slope efficiency of 18.6% at an absorbed power of 3.3 W. Furthermore, a passive Q-switched high-order Laguerre-Gaussian laser with positive and negative handedness is demonstrated for the first time by inserting a Cr:YAG crystal into the laser cavity as a saturable absorber, and the shortest pulse width of the pulsed laser is 232 ns at a repetition rate of 229.1 kHz. The research indicates that spot defect mirror is a stable and reliable measures for direct generation of high-order vortex lasers. Moreover, it can be combined with other solid-state laser technology such as passive Q switching to produce spatially structured light operating at different regimes.
参考文献

[1] Ashkin A, Dzidzic J M, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams [J]. Nature, 1987, 330(6150): 769-771.

[2] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding [J]. Nature Physics, 2008, 4(4): 282-286.

[3] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta [J]. Science, 2012, 338(6017): 640-643.

[4] Hell S W. Far-field optical nanoscopy [J]. Science, 2007, 316(5828): 1153-1158.

[5] Xin J, Dai K, Zhong L, et al. Generation of optical vortices by using spiral phase plates made of polarization dependent devices [J]. Optics Letters, 2014, 39(7): 1984-1987.

[6] Li N, Xu B, Cui S W, et al. High-order vortex generation from CW and passively Q-switched Pr:YLF visible lasers [J]. IEEE Photonics Technology Letters, 2019, 31(17): 1457-1460.

[7] Matsumoto N, Ando T, Inoue T, et al. Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators [J]. Journal of the Optical Society of America A, 2008, 25(7): 1642-1651.

[8] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms [J]. Optics Letters, 1992, 17(3): 221-223.

[9] Lee C Y, Chang C C, Cho C Y, et al. Generation of higher order vortex beams from a YVO4/Nd:YVO4 self-Raman laser via off-axis pumping with mode converter [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(1): 318-322.

[10] Shen Y, Meng Y, Fu X, et al. Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser [J]. Optics Letters, 2018, 43(2): 291-294.

[11] Ding Y, Xu M, Zhao Y, et al. Thermally driven continuous-wave and pulsed optical vortex [J]. Optics Letters, 2014, 39(8): 2366-2369.

[12] Huang X X, Xu B, Cui S W, et al. Direct generation of vortex laser by rotating induced off-axis pumping [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-6.

[13] Zhang S L, Li P, Wang S, et al. Direct excitation of chirality controllable LG01 vortex beam in solid-state lasers by intracavity astigmatism manipulation [J]. Laser Physics Letters, 2019, 16(3): 035002.

[14] Li N, Huang J J, Xu B, et al. Direct generation of an ultrafast vortex beam in a CVD-graphene-based passively mode-locked Pr:LiYF4 visible laser [J]. Photonics Research, 2019, 7(11): 1209-1213.

[15] Tian Q, Xu B, Li N, et al. Direct generation of orthogonally polarized dual-wavelength continuous-wave and passively Q-switched vortex beam in diode-pumped Pr:YLF lasers [J]. Optics Letters, 2019, 44(22): 5586-5589.

[16] Kim D J, Kim J W. Direct generation of an optical vortex beam in a single-frequency Nd:YVO4 laser [J]. Optics Letters, 2015, 40(3): 399-402.

[17] Chard S P, Shardlow P C, Damzen M J. High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design [J]. Applied Physics B, 2009, 97(2): 275-280.

[18] Harris M, Hill C A, Vaughan J M. Optical helices and spiral interference fringes [J]. Optics Communications, 1994, 106(4/5/6): 161-166.

[19] Oron R, Danziger Y, Davidson N, et al. Laser mode discrimination with intra-cavity spiral phase elements [J]. Optics Communications, 1999, 169(1~6): 115-121.

[20] Qiao Z, Xie G Q, Wu Y H, et al. Generating high-charge optical vortices directly from laser up to 288th order [J]. Laser & Photonics Reviews, 2018, 12(8): 1800019.

[21] Uesugi Y, Kozawa Y, Sato S. Direct generation of the lowest-order vortex beam using a spot defect mirror in the ultraviolet region [J]. Optics Letters, 2020, 45(7): 2115-2118.

[22] Ito A, Kozawa Y, Sato S. Generation of hollow scalar and vector beams using a spot-defect mirror [J]. Journal of the Optical Society of America A, 2010, 27(9): 2072-2077.

[23] Wang S, Zhao Z G, Ito I, et al. Direct generation of femtosecond vortex beam from a Yb:KYW oscillator featuring a defect-spot mirror [J]. OSA Continuum, 2019, 2(3): 523-530.

[24] Zhao Y G, Liu Q Y, Zhou W, et al. 1 mJ pulsed vortex laser at 1645 nm with well-defined helicity [J]. Optics Express, 2016, 24(14): 15596-15602.

[25] Naidoo D, At-Ameur K, Brunel M, et al. Intra-cavity generation of superpositions of Laguerre-Gaussian beams [J]. Applied Physics B, 2012, 106(3): 683-690.

[26] Ngcobo S, Litvin I, Burger L, et al. A digital laser for on-demand laser modes [J]. Nature Communications, 2013, 4: 2289.

[27] Forbes A. Structured light from lasers [J]. Laser & Photonics Reviews, 2019, 13(11): 1900140.

周伦滨, 王冬, 徐斌, 廖廷俤. 基于缺陷镜的空心结构光束直接产生研究[J]. 量子电子学报, 2022, 39(1): 142. ZHOU Lunbin, WANG Dong, XU Bin, LIAO Tingdi. Research on direct generation of hollow structured laser beam based on a spot defect mirror[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 142.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!