International Journal of Extreme Manufacturing, 2022, 4 (4): 045102, Published Online: Mar. 4, 2023  

Laser-assisted growth of hierarchically architectured 2D MoS2 crystals on metal substrate for potential energy applications

Author Affiliations
1 Department of Electrical and Computer Engineering, Auburn University, Auburn, AL 36849, United States of America
2 Department of Mechanical and Material Engineering, Auburn University, Auburn, AL 36849, United States of America
Abstract
Recently, there has been substantial interest in the large-scale synthesis of hierarchically architectured transition metal dichalcogenides and designing electrodes for energy conversion and storage applications such as electrocatalysis, rechargeable batteries, and supercapacitors. Here we report a novel hybrid laser-assisted micro/nanopatterning and sulfurization method for rapid manufacturing of hierarchically architectured molybdenum disulfide (MoS2) layers directly on molybdenum sheets. This laser surface structuring not only provides the ability to design specific micro/nanostructured patterns but also significantly enhances the crystal growth kinetics. Micro and nanoscale characterization methods are employed to study the morphological, structural, and atomistic characteristics of the formed crystals at various laser processing and crystal growth conditions. To compare the performance characteristics of the laser-structured and unstructured samples, Li-ion battery cells are fabricated and their energy storage capacity is measured. The hierarchically architectured MoS2 crystals show higher performance with specific capacities of about 10 mAh cm-2, at a current rate of 0.1 mA cm-2. This rapid laser patterning and growth of 2D materials directly on conductive sheets may enable the future large-scale and roll-to-roll manufacturing of energy and sensing devices.

Parvin Fathi-Hafshejani, Jafar Orangi, Majid Beidaghi, Masoud Mahjouri-Samani. Laser-assisted growth of hierarchically architectured 2D MoS2 crystals on metal substrate for potential energy applications[J]. International Journal of Extreme Manufacturing, 2022, 4(4): 045102.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!