激光技术, 2023, 47 (4): 534, 网络出版: 2023-12-11  

便携式高速多光谱辐射测温仪的研制

Development of portable high-speed multi-spectral radiation thermometer
作者单位
北京信息科技大学 仪器科学与光电工程学院,北京 100192
摘要
为了解决传统多光谱辐射测温仪便携性差和无法测量瞬变温度的问题,采用分光光纤和带通滤光片的分光方法,设计了高速光电响应电路,研制了一台便携式高速多光谱辐射测温仪。结果表明,使用光纤和带通滤光片代替传统的棱镜分光,并与其它硬件封装在一起,可降低系统的复杂度,提高仪器的便携性,组装后仪器总体质量不大于4 kg,体积不大于30 cm×25 cm×25 cm;设计高带宽的光电转换电路并使用高速模数转换芯片、现场可编程门阵列芯片及CYUSB3014芯片进行数字信号的采集和传输,与计算机的通信速率高达100 MHz,使得测温仪能够测量微秒级变化的温度;在参考温度稳定的情况下,测温相对误差低于±2.5%,测温精度较高。这些结果对于提高测温仪的便携性和实现瞬变温度场高精度测温是有帮助的。
Abstract
In order to solve the problems of poor portability and inability to measure transient temperature of traditional multi-spectral radiation thermometers, a portable high-speed multi-spectral radiation thermometer was developed by adopting the spectroscopic method of splitting fiber+band-pass filter, and a high-speed photoelectric response circuit was designed. The results show that, the complexity of the system can be effectively reduced and the portability can be improved by using optical fiber and band-pass filter to replace the traditional prism and package it with other hardware of the thermometer. After assembly, the overall mass of the instrument is not more than 4 kg, and the volume is not more than 30 cm×25 cm×25 cm. The photoelectric conversion circuit with high bandwidth was designed, and the high-speed analog digital conversion chip, field-programmable gate array chip and CYUSB3014 chip were used for digital signal acquisition and transmission. The communication rate with the computer is up to 100 MHz, so that the thermometer can measure the temperature with microsecond change. The actual temperature measurement results of muffle furnace temperature after calibration show that the overall relative error of the thermometer is less than ±2.5% and the temperature measurement accuracy is high when the reference temperature is stable. This result is helpful to improve the portability of the thermometer and realize the high-precision temperature measurement of transient temperature field.
参考文献

[1] QIN Y L, LI W, YANG Ch P, et al. Study of multispectral temperature measurement technique for laser damage[J]. Acta Armamentarii, 2019, 40(1):219-224(in Chinese).

[2] ZHAN Ch L, HAN J, LU Sh J, et al. Research on multi-spectral thermometry for the flame temeperature measurement of ammunition explosions[J]. Metrology and Measurement Technology, 2018, 38(6):48-52(in Chinese).

[3] WANG Ch H, LIANG M, LIANG L, et al. A wide-range multi-spectral pyrometer for true temperature measurement of solid rocket engine plume[J]. Spectroscopy and Spectral Analysis, 2018, 38(9):2860-2865(in Chinese).

[4] SUN X X, GAO M, YU P J, et al. Overview of industrial contact temperature measurement technology[J].Electronics World,2021(23):23-24(in Chinese).

[5] NORDINE P C, SHANKAR K, WEBER J K R, et al. Non-contact temperature measurement[J]. Advances in Space Research, 1991, 11(7): 17-31.

[6] LI D. Research on radiation temperature measurement methods of gas turbine blade[D]. Harbin: Harbin Engineering University, 2019:48-52 (in Chinese).

[7] ZHANG Z W. Research on multi-spectral radiation thermometry technology based on infrared spectrometer[D]. Harbin: Harbin Engineering University, 2020:17-21 (in Chinese).

[8] SUN K. Research on technique of explosion flame true temperature measurement[D]. Harbin: Harbin Engineering University, 2012:7-10(in Chinese).

[9] TAN K. Study on the effect of surface oxidation of continuous casting billet and water mist medium on radiation temperature measurement[D]. Chongqing: Chongqing University, 2019: 45-48(in Chinese).

[10] WANG J Zh. Research on key technology in multi-spectral temperature measurement system based on prism[D]. Harbin: Harbin Engineering University, 2015:75-78 (in Chinese).

[11] FENG Ch,MA D D,LI K.Application of IR conversion system on temperature measurement[J].Instrument Technique and Sensor,2011(9):83-85(in Chinese).

[12] DENG X K, YANG Y J. Application and development of CCD multi-wavelength radiation thermometry[J]. Metrology and Measurement Technology, 2011, 31(1): 45-49(in Chinese).

[13] YANG Y L, LIU A X, MA C H, et al. Analysis of infrared temperature measurement model of molten steel based on infrared CCD[J]. Laser Technology, 2018, 42(4):562-566(in Chinese).

[14] TIAN Z L, NIU Ch H, CHEN Q Sh. Development of high-speed multi-spectral radiation temperature measurement system[J]. Laser Technology, 2022,46(6):773-778(in Chinese).

[15] PAN W D. Research on nozzle plume temperature distribution mea-surement system[D]. Harbin: Harbin Institute of Technology, 2008:32-38(in Chinese).

[16] SUN X G, DAI J M, LU X D. The theory of multi-wavelength thermometry and its fitting error estimation[J]. Natural Science Journal of Harbin Normal University, 1997,13(4):42-45(in Chinese).

[17] CHEN J X, LIU G. Analysis of electromagnetic shielding with a incompletely sealed metal plane[J]. Electronic Test, 2008(7):28-30(in Chinese).

[18] ZHAO M, LI X, HAN B, et al. Overview on design of the high-speed transimpedance amplifier[J]. Journal of Electron Devices, 2009, 32(3): 570-573(in Chinese).

[19] GLEN B. Operational amplifier LTC6268 gives new light to optoelectronic applications[J]. China Electronic Market(Basic Electronics), 2017(9):21-26(in Chinese).

[20] XIA D F. Measurement technique research and realization of high speed ADC——a case study of AD9238[D]. Wuhan: Huazhong University of Science and Technology, 2015:27-35(in Chinese).

李梦奇, 杨明庆, 牛春晖, 刘大通. 便携式高速多光谱辐射测温仪的研制[J]. 激光技术, 2023, 47(4): 534. LI Mengqi, YANG Mingqing, NIU Chunhui, LIU Datong. Development of portable high-speed multi-spectral radiation thermometer[J]. Laser Technology, 2023, 47(4): 534.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!