激光技术, 2012, 36 (5): 657, 网络出版: 2012-09-24   

离轴抛物面镜对超短激光脉冲紧聚焦特性的研究

Focusing property for ultra-short pulse laser reflected by off-axis parabolic mirrors
作者单位
兰州大学 核科学与技术学院, 兰州 730000
摘要
为了研究超短激光脉冲光束质量对焦斑的影响, 采用经典的几何模型进行了理论模拟分析, 并实验研究了离轴90°抛物面镜的飞秒激光光束的紧聚焦特性。由理论分析和实验结果可知, 当入射失准角为3mrad时, 将从空间上使焦斑峰值功率密度减半, 失准角的存在将引起到达靶面的激光脉冲的时间展宽从而降低焦斑峰值功率密度; 利用3TW钛宝石飞秒激光系统, 通过f/1离轴90°抛物面镜对激光束进行紧聚焦, 得到最佳焦斑尺寸为5.6μm×5.4μm, 对应于3mJ和96mJ的飞秒脉冲激光光束的焦斑峰值功率密度分别为3.83×1017W/cm2和1.23×1019W/cm2。结果表明, 该研究为开展激光与固体、气体、团簇等物质相互作用的相关实验提供了重要的参考。
Abstract
In order to study the dependence of the focus on the quality of the femtosecond laser beam, the tighten focusing of the femtosecond laser beam reflected by a 90° off-axis parabolic mirror was studied experimentally and theoretically trough the classical geometrical optical model. The obtained theoretical and experimental results indicate that the peak power density of the laser spot will reduce by half when the declination reaches 3mrad. Simultaneously the optical path difference resulted from incident angle causes time broadening of the spot on the target surface and impairs the focal spot intensity to some degrees. A 3TW Ti∶sapphire laser system was adopted in the present work. The best focal spot obtained in the present work with an f/1 off-axis parabolic mirror is 5.6μm×5.4μm and the peak power density is 3.83×1017W/cm2 and 1.23×1019W/cm2 for 3mJ and 96mJ ultra-short pulse laser separately. The study of the tighten focusing for ultra-short laser pulse reflected by 90° off-axis parabolic mirror. This research provides important information for the study on the interactions between the femtosecond laser pulses and solid, gas, clusters and so on.
参考文献

[1] BALTUSKA A, WEI Z Y, PSHENICHNIKOV M S, et al. Optical pulse compression to 5fs at a 1MHz repetition rate[J]. Optics Letters,1997,22(2): 102-104.

[2] YANOVSKY V, CHVYKOV V, KALINCHENKO G, et al. Ultra-high intensity 300TW laser at 0.1Hz repetition rate[J]. Optics Express, 2008, 16(3): 2109-2114.BAKE M, ZAKIR E, DULAT S. Photon acceleration in laser-plasma interaction[J]. Laser Techonolgy, 2011, 35(2): 282-284(in Chinese).

[3] CHEN B F, LIU T F. Estimation chirp in ultrashort laser pulses using interferometric autocorrelation envelope width[J]. Laser Techonolgy, 2010, 34(6): 851-854(in Chinese).

[4] LI Y T, ZHANG J, SHENG Z M, et al. Spatial distribution of high-energy electron emission from water plasmas produced by femtosecond laser pulses[J]. Physical Review Letters, 2003, 90(16): 165002-165005.

[5] YE W, XU H, HE F, et al. Direct acceleration of solid-density plasma bunch by ultraintense laser[J]. Physical Review, 2005, E72(4): 046401-046406.

[6] XIONG H, LIU S Q, LIAO J J, et al. Self-focusing of intense laser pulse propagating in underdense plasma[J]. Laser Techonolgy, 2010, 34(2): 272-272(in Chinese).

[7] YIN F, TAO X Y. Acceleration of relativistic electron in Gaussian laser electromagnetic field[J]. Laser Techonolgy,2011,35(3):384-387(in Chinese).

[8] MEGERLE U, PUGLIESI I, SCHRIEVER C, et al. Sub-50fs broadband absorption spectroscopy with tunable excitation: putting the analysis of ultrafast molecular dynamics on solid ground[J]. Applied Physics,2009,B96(2): 215-231.

[9] BISSELL J J, RIDGERS C P, KINGHAM R J. Field compressing magnetothermal instability in laser plasmas[J]. Physical Review Letters, 2010, 105(17): 175001-175004.

[10] CUI X Q, GAO B L, WANG D X, et al. A new polishing technology for large diameter and deep aspherical mirror[J]. Acta Optica Sinica, 2005, 25(3): 402-407(in Chinese).

[11] PAN J H. The methodic design of the IR imaging system with large aperture[J]. Acta Optica Sinica, 2003, 23(12): 1475-1479(in Chinese).

[12] MATSUOKA S, NAMAKWA K. Wave-front measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method[J]. Journal of the Optical Society of America, 2000, B 17(4): 663-667.

[13] LIU X L, SUN Sh H, REN Zh G, et al. Micro-displacement measurement system of pulse equivalent and return difference of a stepping motor[J]. Laser Technology, 2011, 35(5): 603-306(in Chinese).

[14] LUO X, CHEN P F, WANG Y. Analysis of 90° off-axis parabolic mirror focal spot characteristic[J]. Acta Optica Sinica, 2009, 29(3): 682-687(in Chinese).

[15] LIU L Q, PENG H S, ZHOU K N, et al. Optical measurement systems for industrial inspection IV[J]. Proceedings of SPIE,2005,5856: 646.

[16] JIANG J J, LUO F, CHEN J G. Research on femtosecond laser induced damage to CCD[J]. High Power Laser and Particle Beams, 2005, 17(4): 515-517(in Chinese).

[17] WANG Z H, JIN Z, ZHENG J A, et al. Wave front correction of ultra-short ultra-intense laser pulses[J]. Science in China, 2004, G34(6): 620-629(in Chinese).

[18] HOU B, NEES J, MORDOVANAKIS A, et al. Hard X-ray generation from solids driven by relativistic intensity in the lambda-cubed regime[J]. Applied Physics,2006,B83(1):81-85.

刘作业, 李露, 胡碧涛. 离轴抛物面镜对超短激光脉冲紧聚焦特性的研究[J]. 激光技术, 2012, 36(5): 657. LIU Zuo-ye, LI Lu, HU Bi-tao. Focusing property for ultra-short pulse laser reflected by off-axis parabolic mirrors[J]. Laser Technology, 2012, 36(5): 657.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!