光学学报, 2023, 43 (8): 0822028, 网络出版: 2023-04-06  

基于权重函数优化的渐进多焦点镜片设计 下载: 578次

Design of Progressive Addition Lens Based on Weight Function Optimization
作者单位
1 上海理工大学健康科学与工程学院医学光学与视光学研究所,上海 200093
2 上海理工大学教育部光学仪器与系统工程研究中心,上海 200093
3 上海理工大学光电信息与计算机工程学院,上海 200093
4 上海理工大学上海介入医疗器械工程技术研究中心,上海 200093
摘要
探究渐进多焦点镜片间接法设计中权重函数和平均曲率分布对镜片光焦度和像散的影响。设计了两组权重函数分布以及平均曲率分布,提出了根据符合度矩阵重置镜片权重分布的优化方法。在相同参数下计算出5组具有不同权重函数和平均曲率分布的渐进多焦点自由曲面面型。对镜片进行加工和评价测量,实验结果表明:权重函数的形状、面积以及权重值的不同,可对镜片光学性能带来不同方面的优化,且权重函数和平均曲率分布共同影响镜片的光焦度和像散分布。
Abstract
Objective

Progressive addition lenses (PALs) are commonly used to correct presbyopia and prevent pseudomyopia and other visual accommodation disorders in adolescents. Compared with conventional single-vision lenses, bifocal lenses, and trifocal lenses, the focal length of a PAL changes gently from far to near, and the lens has no obvious boundary of imaging distortion. The shape is well-designed, and it only needs one pair of glasses to look far and closely. At present, the design methods of progressive freeform surfaces are mainly divided into two types: direct method and indirect method. The direct method directly calculates the sag distribution of the entire surface based on the mean curvature. However, this method may make peripheral astigmatism become two times the addition power (ADD), which will affect the visual imaging effect. By constructing the model of mean curvature and principal curvature difference and solving a specific high-order partial differential equation to minimize it, the indirect design method obtains the sag value of the PAL indirectly, which can reduce peripheral astigmatism more effectively while ensuring the lens's photo focal quality. At present, the research on the design of the PAL indirect method mainly focuses on surface optimization, and there is less research on the optimization of the weight function design algorithm. Therefore, based on the existing research, this paper realizes the optimization of the PAL by optimizing the weight function and the mean curvature distribution in the construction of the minimization model algorithm, so as to explore their influence on the optical performance optimization of PALs.

Methods

According to a PAL minimization model algorithm in the present studies, two groups of weight functions and mean curvature distributions were first designed, and three groups of free-form PALs with different weight functions and mean curvature distributions were calculated respectively. In the next step, an optimization method was proposed to reset the weight distribution of the lenses according to the conformity matrix, and two groups of PALs with different optimization degrees were recalculated under the same parameters. Then, five groups of lenses were machined and evaluated by free-form surface machine tools and testing instruments, and the effects of the optimization method in this paper on the optical power, astigmatism, and other optical properties of PALs were analyzed. In addition, issues such as wearing personalization and comfort were considered.

Results and Discussions

The channel length can be shortened, and the ADD can be increased by changing the mean curvature distribution to a circular design. The difference in the shape, area, and weight value of the weight function will affect the sizes of the distance area and the near area. The optical power of the distance area is also improved, and the astigmatism is significantly reduced (Table 2). Lenses after recalculation of weights according to the power conformity matrix are further optimized, and the higher weight value and the more concentrated weight distribution make the optical power error of the lenses become almost zero. The weight function combines the advantages of progressive surfaces with hard and soft designs, and the change of astigmatism from the distance area to the blending area increases slowly, which can reduce the imaging distortion when the line of sight switches from left to right. Maximum astigmatism in the blending area decreased to 1.75 D (Fig. 10). In addition, it has a relatively wide and small astigmatism channel, which can reduce the imaging distortion when the line of sight is from far to near. The machining results are basically consistent with the simulation results. This optimization method can optimize the optical properties of free-form PALs.

Conclusions

This paper mainly explores the influence of weight function and mean curvature distribution on PAL design. Five groups of PALs were calculated by designing five groups of different weight functions and mean curvature distributions. The machining and measurement results show that the weight function and mean curvature distribution jointly affect the optical properties of the lenses. The different shapes, areas, and weight values of the weight function can improve the optical performance of the lens in different aspects. The combination of reasonable mean curvature distribution can improve the power accuracy of the PALs. The weight function reset according to the focal power conformity can reduce the lens photometric error and make the astigmatism of the blending area change more gently, so as to bring a better visual experience for wearers. This paper also considers the flexibility of the design under different refractive states, which can meet the individual needs of different wearers. The research results of this paper can be further deepened, and more different groups of weight function and mean curvature distribution can be designed for comparison, so as to achieve a better optimization effect on the optical performance of the lens.

1 引言

渐进多焦点镜片(PAL)常被用来矫正老花眼,也可用于预防青少年假性近视和其他视力调节障碍1。与普通的单光镜、双焦点镜、三焦点镜相比,渐进多焦点镜片焦距从远用到近用变化平缓,镜片上没有明显的成像畸变分界线,外形设计更加美观,而且看远看近只需要一副眼镜。

目前,渐进自由曲面设计方法主要分为直接法和间接法两种2。直接法根据平均曲率直接计算出整个曲面的矢高分布,苏州大学唐运海团队3利用平均曲率流优化镜片光学性能,又于2017年使用拉普拉斯方程进行研究以满足不同佩戴者对镜片的个性化需求4。2022年张海平等5将非球面方程与渐进多焦点镜片设计结合,优化镜片像散;但这种设计方法可能致使周边散光接近2倍的加光度,影响视觉成像效果6。1998年Loos等7提出了间接设计方法,通过构建平均曲率和主曲率差的模型并求解特定的高阶偏微分方程,间接获得渐进多焦点自由镜片的矢高值,在保证镜片光焦度情况下更有效地减少周边像散。2004年Wang等2在Loos的最小化模型基础上选择了有限元的方法求解面型,并且指出需要进一步研究最小化模型中的权重函数设计。2006年Steele等8使用迭代求解泊松方程的方法计算渐进镜片矢高。2012年Hsu等9利用B样条的局部控制能力来描述自由曲面。2014年Jiang等10提出了一种变分差分法的数值方法,以高效地求解泛函。2016年Li等11在间接设计方法的基础上,使用Zernike多项式来拟合自由曲面以提高加工精度。

以上研究表明渐进多焦点自由曲面镜片的间接法设计具有明显优势。目前,关于渐进镜片间接法设计的研究多集中在面型优化方面,对于权重函数设计算法的优化研究较少。因此,本文在已有的研究基础上12-13,通过优化构建最小化模型算法中的权重函数来实现渐进多焦点镜片的优化,设计对比了两组权重函数以及两组平均曲率分布,以探究它们对渐进多焦点自由曲面光学性能优化的影响。

2 基本原理

渐进镜片主要分为4个区域,远用区、近用区、中间区(加光通道)和像散区(周边区域),如图1所示1214。渐进镜片度数沿中线呈梯度平滑增加,增加梯度从镜片顶部的远用区开始,并在镜片底部近用区达到最大附加光焦度(ADD)。镜片表面光焦度梯度的长度取决于镜片的设计和需求,ADD取决于患者的屈光不正程度,一般在0.75~3.5 m-1之间。一般来说,患者年龄越大,ADD越高。

图 1. 渐进多焦点镜片结构图

Fig. 1. Progressive addition lens

下载图片 查看所有图片

理想的渐进多焦点自由曲面镜片应该具有平滑的渐进光焦度分布,并且没有额外的像散。然而,只有镜片表面为平面或球面时,整个表面上才有可能达到零像散,但单光镜无法满足规定的光焦度分布。因此,要达到理想的光焦度分布和不需要的像散的最优解,需要构建最小化镜片质量函数模型Iu2710

Iu=Ωαx,yk1-k222+βx,yk1+k22-Px,y2dxdy

式中:u是镜片所设计表面的矢高分布;Ω为曲面的积分域;k1k2分别表示曲面的两个主曲率,与曲面矢高相关;权重函数α控制镜片的像散分布,权重函数β控制镜片的光焦度分布,在典型的设计中,这两个权重函数基本相等2P为曲面的平均曲率分布。

3 不同曲率分布和权重函数设计

3.1 曲率分布

本文提出两种不同的平均曲率分布设计。根据镜片的直径、基弯以及光焦度直接计算得出镜片后表面平均曲率分布P210,如图2(a)所示。为了改善镜片的光学性能,设计了一种以中轴线对称的圆形分布矩阵6的平均曲率分布,如图2(b)所示,平均曲率的计算值不变,远近用区的面积增大了,并且周边区域曲率变化更加平缓。

图 2. 两种平均曲率分布。(a)间接法平均曲率分布;(b)直接法平均曲率分布

Fig. 2. Two mean curvature distributions. (a) Mean curvature distribution of indirect method; (b) mean curvature distribution of direct method

下载图片 查看所有图片

3.2 基于边界曲线的权重函数设计

为了满足不同佩戴者的要求,给定0.5 D(1 D=1 m-1)等散光边界曲线的函数表达,设计了一种不同于传统的权重函数αβ的分布,以更加灵活地调节远用区、近用区的大小以及加光通道的长度和宽度15

uDy=ad+bdadtany-cddd+π2uNy=an+bny+cny2+dny3

式中:uDy为远用区边界曲线;uNy为近用区边界曲线;adbdcdddanbncndn是可自由调节的参数,用于改变曲线的形状。通道处使用圆弧曲线平滑连接。主线采用三段折线式设计16-17,可以实现镜片区域的非对称分布。在规定的光焦度分布区域内以及像散最小的区域内,权重值设为30,其他区域的权重为0,如图3所示。

图 3. 硬设计和软设计权重函数分布。(a)硬设计权重函数;(b)软设计权重函数

Fig. 3. Weight function distributions of hard design and soft design. (a) Hard design weight function; (b) soft design weight function

下载图片 查看所有图片

图3(a)为硬性设计权重分布,权重函数αβ远用区面积较大,加光通道较短。使用与权重分布相同的远用区与近用区形状,得到图2(a)的平均曲率分布。由式(1)得出渐进曲面面型,记为镜片1。

权重函数αβ的参数与分布不变,使用图2(b)所示的圆形平均曲率分布直接替换镜片1的平均曲率分布,记为镜片2。

依据式(2),调节边界曲线参数,给出拥有较小远用区面积以及较长渐进通道的软性设计权重分布,如图3(b)所示。结合图2(b)的圆形平均曲率分布,计算得出一个软设计渐进曲面。之后,使用混合设计法3优化该曲面,记为镜片3。

3.3 重建权重分布

为了更好地优化渐进多焦点自由曲面镜片的光学性能,本节提出一种新的优化方法,以达到重建镜片面型的目的。以3.1节中镜片1的设计方法为基础,得到直径为R(单位为mm)的渐进多焦点镜片面型,并将其仿真光焦度离散为m×n个网格格点矩阵,如图4所示。

图 4. 渐进多焦点镜片网格划分

Fig. 4. Mesh division of progressive addition lens

下载图片 查看所有图片

对于镜片上任意一个网格格点m,n,将渐进多焦点镜片的理论光焦度定义为F(其元素为Fiji=1,2,,mj=1,2,,n),设计光焦度为f(其元素为fij):

F=F11F12F1nF21F22F2nFm1Fm2Fmnf=f11f12f1nf21f22f2nfm1fm2fmn

设计光焦度与配戴者处方光焦度之间的差值为ΔF

ΔF=F-f=F11-f11F12-f12F1n-f1nF21-f21F22-f22F2n-f2nFm1-fm1Fm2-fm2Fmn-fmn

符合度定义为设计值与处方值之差和人眼视力矫正之间的关系,用δm,n表示。为了探讨设计光焦度和仿真光焦度之间的符合度,根据渐变焦眼镜国际标准18:当fij-Fij0.12 D,认定该点满足设计要求,符合度为δm,n=1;当fij-Fij>0.25 D,认定该点不满足设计要求,符合度为δm,n=0;当0.25 Dfij-Fij>0.12 D,认定该点部分满足设计要求,符合度满足线性分布:

δm,n=1                                      fij-Fij0.12 D25-100fij-Fij13                                    0.25 Dfij-Fij>0.12 D0                                    fij-Fij>0.25 D

对应镜片上m×n个网格格点的光焦度符合度矩阵δ(其元素为δij)为

δ=δ11δ12δ1nδ21δ22δ2nδm1δm2δmn

符合度权重函数分布如图5(a)所示,以此作为重置后的αβ权重函数分布,结合图2(a)的间接法平均曲率分布,由式(1)得出新的渐进镜片面型,记为镜片4。

图 5. 重建权重函数分布。(a)符合度权重函数分布;(b)优化重建权重函数分布

Fig. 5. Reconstruction weight function distributions. (a) Conformity weight function distribution; (b) optimized reconstruction weight function distribution

下载图片 查看所有图片

为了优化权重值位于0到1之间的不规则部分,将δij=1的点重新赋值为30,小于1的点均置为0,得到图5(b),以此作为再次重置后的αβ权重函数分布,结合图2(a)的平均曲率分布,使用混合设计法3对此重置面型进行优化,形成一个新的渐进多焦点镜片曲面,记为镜片5。

4 分析与讨论

4.1 仿真实例

镜片的基础参数如表1所示。

表 1. 镜片参数

Table 1. Lens parameters

Index nFront curvature radius R /mmBase bend /DDistance SPHADD /DThickness d /mm
1.56139.753.9502.002.30

查看所有表

对镜片1和镜片5进行仿真设计和对比分析,光焦度与像散仿真结果如图67所示。

图 6. 镜片1和5的光焦度仿真结果。(a)镜片1的光焦度;(b)镜片5的光焦度

Fig. 6. Simulation results of optical power of lenses 1 and 5. (a) Optical power of lens 1; (b) optical power of lens 5

下载图片 查看所有图片

图 7. 镜片1和5的像散仿真结果。(a)镜片1的像散;(b)镜片5的像散

Fig. 7. Simulation results of astigmatism for lenses 1 and 5. (a) Astigmatism of lens 1; (b) astigmatism of lens 5

下载图片 查看所有图片

图6中,镜片1的通道过长,近用区的中心定焦区位置过于靠近镜片底部,加光度低于2.00 D。使用重置法优化后的镜片5加光通道明显缩短,远用区与近用区的定焦区面积增大,ADD也符合预设值。

图7的像散仿真对比结果可以看出,镜片1远用区散光大于0.25 D,不符合镜片设计标准,且周边区近鼻侧不需要的散光过大,变化过快。优化后的镜片5远用区散光减小,向两边增加时过渡更加平缓,最大散光也降低到1倍加光度以下。

4.2 加工实例

为了更好地说明权重函数和曲率分布对渐进镜片光学性能的影响,使用自由曲面机床(明月镜片股份有限公司)对这5组镜片进行加工,得到镜片实物,如图8所示。

图 8. 5组镜片实物

Fig. 8. Photos of five lenses

下载图片 查看所有图片

使用VM2000自由曲面检测仪器对这5组镜片进行测量19,得到镜片的光焦度分布与像散分布如图9图10所示。

图 9. 镜片光焦度测量结果。(a)镜片1的光焦度;(b)镜片2的光焦度;(c)镜片3的光焦度;(d)镜片4的光焦度;(e)镜片5的光焦度

Fig. 9. Measurement results of lens optical power. (a) Optical power of lens 1; (b) optical power of lens 2; (c) optical power of lens 3; (d) optical power of lens 4; (e) optical power of lens 5

下载图片 查看所有图片

图 10. 镜片像散测量结果。(a)镜片1的像散;(b)镜片2的像散;(c)镜片3的像散;(d)镜片4的像散;(e)镜片5的像散

Fig. 10. Measurement results of lens astigmatism. (a) Astigmatism of lens 1; (b) astigmatism of lens 2; (c) astigmatism of lens 3; (d) astigmatism of lens 4; (e) astigmatism of lens 5

下载图片 查看所有图片

使用焦度计测量这5组镜片的实际远用区球镜度(SPH)、像散(CYL)以及ADD,镜片的实际远用区、近用区及通道宽度如表2所示。宽度测量位置以0.50 D等散光线为基准,分别位于y轴8 mm、0 mm以及-12 mm处,在图10散光分布中以三条黑色线标出。

表 2. 渐进镜片测量光度值及区域宽度

Table 2. Measured photometric values and zone width of PALs

LensActual distance SPH /DActual distance CYL /DActual ADD /DWidth of distance zone /mmWidth of intermediate zone /mmWidth of near zone /mm
10.34-0.271.7024.815.2810.28
20.11-0.181.9427.105.208.00
30.07-0.091.9724.355.008.15
40.15-0.171.9328.854.4210.29
50.010.081.9225.345.466.93

查看所有表

综合表2数据和图9图10可以发现,权重函数未经优化设计的镜片1远用区像散较大,通道宽度足够宽但通道长度过长,以致于加光度ADD不足,与设计值相差0.30 D。远用区光焦度也超过国家标准(GB 10810.1—2005)18所要求的0.12 D。

镜片2为直接法圆形设计,通道长度缩短,因此加光度ADD达到设计要求。镜片2近用区面积略缩小,远用区面积增大,像散明显减小。远用区光焦度也有所改善,与设计值误差减小,符合国家标准。

镜片3结合了硬设计渐进曲面与软设计渐进曲面的优点,因此远用区面积略有减小。镜片3远用区光焦度及像散都得到了优化,加光度与设计值之间的误差也减小了。从图10(c)还可以看出,镜片3远用区到周边区域的像散过渡更加明显,散光值增加缓慢,成像畸变减小,镜片的光学效果得到优化。

镜片4为根据符合度矩阵重新计算权重后的镜片。远用区光焦度大于国家标准0.03 D18,散光值也偏高,整体上对镜片1的算法实现了一定优化。远近用区面积与重置前比有所增大,但通道宽度过窄,周边区域最大散光大于1倍ADD,因此需要进行进一步优化。

镜片5为优化镜片4符合度矩阵后重置的镜片。更高的权重值以及更集中的权重分布使镜片处方与设计值的光焦度差几乎为0。镜片5与镜片2结合后,远用区到周边区域的散光变化增加缓慢,出现了一定的过渡,视线左右切换时的成像畸变减小。周边区域最大散光减小到1.75 D。远近用区面积虽略有减小,但也减小了相对较宽,散光较小,视线由远及近时的成像畸变减小。加工结果与仿真结果基本一致,此种优化方法能够实现渐进多焦点自由曲面镜片光学性能优化的目的。

5 结论

本文主要探究权重函数和平均曲率分布对渐进多焦点镜片设计的影响。通过设计5组不同的权重函数和平均曲率分布,计算出5组渐进多焦点自由曲面面型。镜片的加工和测量结果表明了权重函数和曲率分布共同影响镜片的光学性能。权重函数的形状、面积以及权重值的不同可对镜片光学性能带来不同方面的优化。合理的平均曲率分布可以提升渐进自由曲面的光焦度精准度。利用光焦度符合度重置后的权重函数可减小镜片光度误差,且使周边区域像散更加平缓地变化,以为佩戴者带来更好的视觉体验。本文还考虑了不同屈光状态下设计的灵活性,以满足不同佩戴者的个性化需求。在本文研究基础上,未来可以设计不同组的权重函数和平均曲率分布来进行对比研究,以得到光学性能更优越的渐进多焦点镜片。

参考文献

[1] 高健东, 项华中, 李念宁, 等. 权重函数对渐进镜片设计的影响[J]. 光子学报, 2020, 49(9): 0922001.

    Gao J D, Xiang H Z, Li N N, et al. Influence of weight function on progressive addition lens design[J]. Acta Photonica Sinica, 2020, 49(9): 0922001.

[2] Wang J, Santosa F. A numerical method for progressive lens design[J]. Mathematical Models and Methods in Applied Sciences, 2004, 14(4): 619-640.

[3] 唐运海, 吴泉英, 钱霖, 等. 渐进多焦点眼用镜片的平均曲率流优化设计[J]. 光学学报, 2011, 31(5): 0522001.

    Tang Y H, Wu Q Y, Qian L, et al. Optimizing design for progressive addition lenses by mean curvature flow[J]. Acta Optica Sinica, 2011, 31(5): 0522001.

[4] Tang Y H, Wu Q Y, Chen X Y, et al. A personalized design for progressive addition lenses[J]. Optics Express, 2017, 25(23): 28100-28111.

[5] 张海平, 唐运海, 张慧星, 等. 基于非球面方程的渐进多焦点眼用镜片优化设计[J]. 激光与光电子学进展, 2022, 59(3): 0322001.

    Zhang H P, Tang Y H, Zhang H X, et al. Optimal design of progressive addition lenses based on aspherical formula[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0322001.

[6] WinthropJ T. Progressive addition spectacle lens: US5123725[P]. 1992-06-23.

[7] Loos J, Greiner G, Seidel H P. A variational approach to progressive lens design[J]. Computer-Aided Design, 1998, 30(8): 595-602.

[8] SteeleT, McLoughlinH, PayneD. Progressive addition power lens: US7033023[P]. 2006-04-25.

[9] Hsu W Y, Liu Y L, Cheng Y C, et al. Design, fabrication, and metrology of ultra-precision optical freeform surface for progressive addition lens with B-spline description[J]. The International Journal of Advanced Manufacturing Technology, 2012, 63(1): 225-233.

[10] Jiang W, Bao W Z, Tang Q L, et al. A variational-difference numerical method for designing progressive-addition lenses[J]. Computer-Aided Design, 2014, 48: 17-27.

[11] Li Y Y, Xia R S, Chen J J, et al. Freeform surface of progressive addition lens represented by Zernike polynomials[J]. Proceedings of SPIE, 2016, 9683: 96830W.

[12] Xiang H Z, Zhang L, Gao J D, et al. Weight distributions of spherical and cylindrical power deviations for designing freeform progressive addition lenses[J]. Optics Communications, 2021, 484: 126662.

[13] 杨通, 段璎哲, 程德文, 等. 自由曲面成像光学系统设计:理论、发展与应用[J]. 光学学报, 2021, 41(1): 0108001.

    Yang T, Duan Y Z, Cheng D W, et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Optica Sinica, 2021, 41(1): 0108001.

[14] Jalie M. Modern spectacle lens design[J]. Clinical & Experimental Optometry, 2020, 103(1): 3-10.

[15] AltheimerH, BeckenW, EsserG, et al. Automatic modification of a progressive lens design: US8888280[P]. 2014-11-18.

[16] AhsbahsF C O, PedronoC. Progressive multifocal ophthalmic lens: US5708493[P]. 1998-01-13.

[17] 项华中, 武杰, 付东翔, 等. 渐进多焦点自由曲面镜片非对称设计內移量对光学性能影响的研究[J]. 光学技术, 2018, 44(2): 147-151.

    Xiang H Z, Wu J, Fu D X, et al. Research of different internal offset values on asymmetric design for optical performance of progressive addition freeform lenses[J]. Optical Technique, 2018, 44(2): 147-151.

[18] General Administration of Quality Supervision, Inspection and Quarantine of the People′s Republic of China, Standardization Administration of the People′s Republic of China. Uncut finished spectacle lenses: part 1: single-vision and multifocal lenses: GB 10810.1—2005[S]. Beijing: Standards Press of China, 2006.

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 眼镜镜片 第1部分:单光和多焦点镜片: GB 10810.1—2005[S]. 北京: 中国标准出版社, 2006.

[19] 朱日宏, 孙越, 沈华. 光学自由曲面面形检测方法进展与展望[J]. 光学学报, 2021, 41(1): 0112001.

    Zhu R H, Sun Y, Shen H. Progress and prospect of optical freeform surface measurement[J]. Acta Optica Sinica, 2021, 41(1): 0112001.

王亚琼, 项华中, 詹小蝶, 张云进, 丁琦慧, 张欣, 郑刚, 陈家璧, 王成, 张大伟, 庄松林. 基于权重函数优化的渐进多焦点镜片设计[J]. 光学学报, 2023, 43(8): 0822028. Yaqiong Wang, Huazhong Xiang, Xiaodie Zhan, Yunjin Zhang, Qihui Ding, Xin Zhang, Gang Zheng, Jiabi Chen, Cheng Wang, Dawei Zhang, Songlin Zhuang. Design of Progressive Addition Lens Based on Weight Function Optimization[J]. Acta Optica Sinica, 2023, 43(8): 0822028.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!