硅酸盐通报, 2023, 42 (7): 2317, 网络出版: 2023-11-01  

内掺白云石水泥基材料抗硫酸盐侵蚀性能

Sulfate Attack Resistance of Dolomite Cement-Based Materials
作者单位
新疆大学建筑工程学院,乌鲁木齐 830047
摘要
为考察白云石对水泥基材料抗硫酸盐侵蚀性能的影响,本文采用10%、20%、30%(质量分数,下同)白云石掺入水泥净浆与水泥砂浆试件中,在低温条件下浸泡于5%硫酸镁和5%硫酸钠溶液中,并进行硫酸盐侵蚀试验。定期观察试件的宏观形貌变化,并定量分析其侵蚀产物。测定水泥砂浆试件抗折强度与抗压强度并进行宏观分析,以此得出不同种类硫酸盐对试件生成碳硫硅钙石的影响。采用热力学模拟探究白云石对水泥胶凝体系产物的影响。结果表明:当白云石掺量为10%~20%时,能抑制水泥基材料中碳硫硅钙石的生成,水泥基材料的抗硫酸盐侵蚀性能有较大提高,水泥砂浆试件抗折强度有明显改善,这与热力学模拟结果基本一致。
Abstract
In order to investigate the effect of dolomite on the sulfate resistance of cement-based materials, the cement paste specimens and cement mortar specimens mixed by 10%, 20%, 30% (mass fraction, the same as below) dolomite were soaked in 5% MgSO4 solution and 5% Na2SO4 solution at low temperature, and sulfate attack test was carried out. Changes of the macroscopic morphology of specimens were observed regularly, and the erosion products were quantitatively analyzed. Flexural strength and compressive strength of cement mortar specimens were measured for macroscopic analysis, and the effects of different types of sulfates on the formation of thaumasite were obtained. At the same time, the effect of dolomite on the products of cement cementitious system was investigated by thermodynamic simulation. The results show that when the dolomite content is 10%~20%, the formation of thaumasite is inhibited, the sulfate resistance of cement-based materials is greatly improved, and the flexural strength of cement mortar specimens is significantly improved, which is consistent with the result of thermodynamic simulation.
参考文献

[1] 杨永敢. 硫酸盐环境下损伤混凝土的劣化机理与寿命预测[D]. 南京: 东南大学, 2019.

[2] 姜 磊, 牛荻涛. 硫酸盐侵蚀作用下混凝土损伤层与微观研究[J]. 硅酸盐通报, 2015, 34(12): 3462-3467.

[3] SKAROPOULOU A, SOTIRIADIS K, KAKALI G, et al. Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack[J]. Cement and Concrete Composites, 2013, 37: 267-275.

[4] NIELSEN P, NICOLAI S, DARIMONT A, et al. Influence of cement and aggregate type on thaumasite formation in concrete[J]. Cement and Concrete Composites, 2014, 53: 115-126.

[5] 徐江涛, 卢都友, 张少华, 等. 40 ℃和60 ℃养护时含白云石微粉砂浆的强度和水化产物[J]. 硅酸盐学报, 2016, 44(11): 1588-1594.

[6] 傅 博, 程臻赟, 何妍亭, 等. 矿渣对水泥石抗碳硫硅钙石型硫酸盐腐蚀性能的影响[J]. 硅酸盐通报, 2020, 39(2): 471-476.

[7] 高小建, 马保国, 董荣珍. Thaumasite的结构、形成机理及对混凝土的破坏作用[J]. 硅酸盐通报, 2005, 24(1): 51-54+59.

[8] GOUDA G R, ROY D M, SARKAR A. Thaumasite in deteriorated soil-cements[J]. Cement and Concrete Research, 1975, 5(5): 519-522.

[9] CRAMMOND N J. The thaumasite form of sulfate attack in the UK[J]. Cement and Concrete Composites, 2003, 25(8): 809-818.

[10] CRAMMOND N. The occurrence of thaumasite in modern construction: a review[J]. Cement and Concrete Composites, 2002, 24(3/4): 393-402.

[11] HOBBS D W, TAYLOR M G. Nature of the thaumasite sulfate attack mechanism in field concrete[J]. Cement and Concrete Research, 2000, 30(4): 529-533.

[12] FREYBURG E, BERNINGER A M. Field experiences in concrete deterioration by thaumasite formation: possibilities and problems in thaumasite analysis[J]. Cement and Concrete Composites, 2003, 25(8): 1105-1110.

[13] 马保国, 高小建, 何忠茂, 等. 混凝土在SO2-4和CO2-3共同存在下的腐蚀破坏[J]. 硅酸盐学报, 2004, 32(10): 1219-1224.

[14] 胡明玉, 唐明述, 龙伏梅. 新疆永安坝混凝土的碳硫硅钙石型硫酸盐腐蚀[J]. 混凝土, 2004(11): 5-7.

[15] CHU H Y, CHEN J K. Evolution of viscosity of concrete under sulfate attack[J]. Construction and Building Materials, 2013, 39: 46-50.

[16] SOTIRIADIS K, NIKOLOPOULOU E, TSIVILIS S. Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature[J]. Cement and Concrete Composites, 2012, 34(8): 903-910.

[17] RAMEZANIANPOUR A M, HOOTON R D. Thaumasite sulfate attack in Portland and Portland-limestone cement mortars exposed to sulfate solution[J]. Construction and Building Materials, 2013, 40: 162-173.

[18] 马保国, 付浩兵, 王迎斌, 等. Mg2+条件下不同温度对碳硫硅钙石生成过程的影响研究[J]. 混凝土, 2015(2): 1-3+9.

[19] DIAMOND S. Thaumasite in Orange County, Southern California: an inquiry into the effect of low temperature[J]. Cement and Concrete Composites, 2003, 25(8): 1161-1164.

[20] 王 政, 高小建, 马保国. 掺石灰石粉水泥胶砂低温硫酸盐侵蚀破坏与机理[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(1): 95-99.

[21] 张 恒. 硫酸钠盐渍土盐胀冻胀机理及电化学防治技术研究[D]. 广州: 华南理工大学, 2020.

[22] 凌 康, 卢都友, 徐江涛, 等. 含白云石微粉水泥砂浆的抗硫酸盐侵蚀性能[J]. 硅酸盐学报, 2018, 46(2): 224-229.

[23] TSIVILIS S, KAKALI G, SKAROPOULOU A, et al. Use of mineral admixtures to prevent thaumasite formation in limestone cement mortar[J]. Cement and Concrete Composites, 2003, 25(8): 969-976.

[24] KAKALI G, TSIVILIS S, SKAROPOULOU A, et al. Parameters affecting thaumasite formation in limestone cement mortar[J]. Cement and Concrete Composites, 2003, 25(8): 977-981.

[25] 肖 佳, 吴 婷, 何彦琪, 等. 水泥-白云石粉浆体流变性能研究[J]. 硅酸盐通报, 2016, 35(3): 891-896.

[26] LIU Z Q, DENG D H, DE SCHUTTER G, et al. The effect of MgSO4 on thaumasite formation[J]. Cement and Concrete Composites, 2013, 35(1): 102-108.

[27] 徐江涛, 卢都友, 张少华, 等. 不同养护温度下含白云石和石灰石微粉砂浆的孔结构[J]. 硅酸盐学报, 2017, 45(2): 268-273.

张超, 温勇, 李宇航, 李承诺, 封彦羽, 赵瑞翔. 内掺白云石水泥基材料抗硫酸盐侵蚀性能[J]. 硅酸盐通报, 2023, 42(7): 2317. ZHANG Chao, WEN Yong, LI Yuhang, LI Chengnuo, FENG Yanyu, ZHAO Ruixiang. Sulfate Attack Resistance of Dolomite Cement-Based Materials[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(7): 2317.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!