硅酸盐学报, 2023, 51 (5): 1219, 网络出版: 2023-08-13  

空天地一体化感知下的混凝土振捣质量智能监控

Intelligent Monitoring of Concrete Vibration Quality Based on Space-Air-Ground Integrated Perception
作者单位
1 天津大学, 水利工程仿真与安全国家重点实验室, 天津 300350
2 雅砻江流域水电开发有限公司, 成都 610051
摘要
综合采集混凝土振捣施工过程多源异构信息, 进而及时、客观地分析振捣质量, 对于保障高拱坝坝体混凝土施工质量至关重要。针对高拱坝混凝土振捣施工信息以“空-地”感知技术为主, 存在信息感知不全和数据质量有待提高的问题, 建立空天地一体化的混凝土振捣施工信息智能感知体系, 实现混凝土浇筑过程中多源、多维度、多模态施工信息的立体感知。在此基础上, 针对数值型、视频流以及图像型信息, 分别提出基于Kalman滤波的全球导航卫星系统(GNSS)定位信息降噪方法、基于改进Faster R-CNN的视频信息解析方法和基于DeblurGAN-v2的表面图像去模糊方法。以杨房沟水电站为例, 应用所提空天地一体化感知方法与技术, 实现混凝土振捣质量智能分析与监控。
Abstract
It is essential to ensure the concrete construction quality of high arch dam via comprehensively collecting multi-source heterogeneous information in the concrete vibration construction and timely and objectively analyzing vibration quality. For incomplete information perception and undesirable data quality in current space-ground perception technology during concrete vibration construction, an intelligent sensing scheme with space-air-ground integration for concrete vibrating construction information was established to realize the stereoscopic perception of multi-source, multi-modal and multi-scale construction information in the concrete pouring process. On this basis, the Kalman-based denoising method for positioning data of Global Navigation Satellite System (GNSS), improved Faster R-CNN-based video analysis method and DebrGAN-v2-based surface image deblurring method were proposed, respectively, for numerical type, video stream, and image information. Taking Yangfanggou hydropower station as an example, the intelligent analysis and monitoring of concrete vibration quality can be realized by the proposed space-air-ground integration sensing method.
参考文献

[1] 钟登华, 任炳昱, 宋文帅, 等. 高拱坝建设进度与质量智能控制关键技术及其应用研究[J]. 水利水电技术, 2019, 50(8): 8-17.

[2] 钟登华, 时梦楠, 崔博, 等. 大坝智能建设研究进展[J]. 水利学报, 2019, 50(1): 38-52.

[3] 沈子洋. 混凝土坝振捣施工质量智能监控方法及应用研究[D]. 天津: 天津大学, 2018.

[4] 钟桂良, 徐建江, 乔雨, 等. 混凝土振捣质量智能监控关键技术研究与应用[J]. 水利水电技术, 2020, 51(2): 422-426.

[5] 赵雄文, 张钰, 秦鹏, 等. 空天地一体化无线光通信网络关键技术及其发展趋势[J]. 电子学报, 2022, 50(1): 1-17.

[6] 徐靓, 程刚, 朱鸿鹄. 基于空天地内一体化的滑坡监测技术研究[J]. 激光与光电子学进展, 2021, 58(9): 98-111.

[7] LIU Y H, ZHANG J. Index establishment and capability evaluation of space-air-ground remote sensing cooperation in geohazard emergency response[J]. Nat Hazards Earth Syst Sci, 2022, 22(1): 227-244.

[8] 宋英旭. 基于空天地一体化监测的滑坡风险动态评价研究[D]. 武汉: 中国地质大学, 2019.

[9] YAN Y G, LI M, DAI L D, et al. Construction of “space-sky-ground” integrated collaborative monitoring framework for surface deformation in mining area[J]. Remote Sens, 2022, 14(4): 840.

[10] 张凯, 李全生, 戴华阳, 等. 矿区地表移动“空天地”一体化监测技术研究[J]. 煤炭科学技术, 2020, 48(2): 207-213.

[11] 冯涛, 蒋良文, 曹化平, 等. 高铁复杂岩溶“空天地”一体化综合勘察技术[J]. 铁道工程学报, 2018, 35(6): 1-6.

[12] 王哲威, 冯涛, 徐正宣, 等. CZ铁路折多山越岭段“空天地”一体化地质选线[J]. 铁道工程学报, 2021, 38(10): 9-14.

[13] 孟祥连, 周福军. 复杂山区铁路“空天地内信”勘察技术研究[J]. 铁道工程学报, 2020, 37(8): 1-5.

[14] 化娜丽, 陈小刚, 陈萍, 等. 海洋环境监测立体感知体系[J]. 中国海洋平台, 2021, 36(1): 78-83.

[15] HUA Nali, CHEN Xiaogang, CHEN Ping, et al. China Offshore Platf (in Chinese), 2021, 36(1): 78-83.

[16] ZHOU B, ZHANG S B, XUE R B, et al. A review of Space-Air-Ground integrated remote sensing techniques for atmospheric monitoring[J]. J Environ Sci, 2023, 123: 3-14.

[17] ZHANG Z H, WU S X, ZHUANG Q W, et al. Joint estimation of aboveground biomass using “Space-Air-Ground” data in the Qilian Mountains, China[J]. Ecol Indic, 2022, 138: 108866.

[18] ZHANG C, ZHAO Y X, HE X, et al. Space-sky-surface integrated monitoring system for overburden migration regularity in shallow-buried high-intensity mining[J]. Bull Eng Geol Environ, 2021, 80(2): 1403-1417.

[19] LEI G B, LI A N, ZHANG Z J, et al. The quantitative estimation of grazing intensity on the zoige plateau based on the space-air-ground integrated monitoring technology[J]. Remote Sens, 2020, 12(9): 1399.

[20] ZHANG F, HU Y, XIE Y, et al. Design of integrated space-air-ground farmland quality monitoring mobile laboratory[J]. J Agr Resour Environ, 2022, 38(6): 1029-1038.

[21] 龚健雅, 张翔, 向隆刚, 等. 智慧城市综合感知与智能决策的进展及应用[J]. 测绘学报, 2019, 48(12): 1482-1497.

[22] 耿磊, 徐嫣, 雷佳明. 基于空天地感知的流域智慧指挥平台研究与实现: 以西江流域为例[J]. 人民长江, 2021, 52(2): 289-292.

[23] 王军. 黄河流域空天地一体化大数据平台架构及关键技术研究[J]. 人民黄河, 2021, 43(4): 6-12.

[24] 段洪涛, 万能胜, 邱银国, 等. 富营养化湖库天空地一体化监控平台系统设计与实践[J]. 湖泊科学, 2020, 32(5): 1396-1405.

[25] 陈维亚, 姜雨田, 彭刚, 等. 基于空天地一体化监测的道路土方智能化施工服务平台[J]. 土木工程与管理学报, 2021, 38(1): 112-119.

[26] 王佳俊. 心墙堆石坝坝面碾压智能监控方法与应用研究[D]. 天津: 天津大学, 2019.

[27] 刘玉玺. 碾压混凝土坝施工信息模型原理与应用研究[D]. 天津: 天津大学, 2015.

[28] LI H, CHAN G, WONG J K W, et al. Real-time locating systems applications in construction[J]. Autom Constr, 2016, 63: 37-47.

[29] ZHONG D H, LI X C, CUI B, et al. Technology and application of real-time compaction quality monitoring for earth-rockfill dam construction in deep narrow valley[J]. Autom Constr, 2018, 90: 23-38.

[30] 梅杰, 李庆斌, 陈文夫, 等. 基于目标检测模型的混凝土坯层覆盖间歇时间超时预警[J]. 清华大学学报(自然科学版), 2021, 61(7): 688-693.

[31] 杨宁, 牟荣峰, 乔雨, 等. 面向大坝建造场景的保温被未覆盖区域检测方法[J]. 人民黄河, 2020, 42(2): 251-254.

[32] ZENG T C, WANG J J, CUI B, et al. The equipment detection and localization of large-scale construction jobsite by far-field construction surveillance video based on improving YOLOv3 and grey wolf optimizer improving extreme learning machine[J]. Constr Build Mater, 2021, 291: 123268.

[33] 李晓光, 杨飞璠, 卓力. 动态场景图像去模糊技术研究进展[J]. 北京工业大学学报, 2021, 47(8): 982-990.

[34] 刘利平, 孙建, 高世妍. 单图像盲去模糊方法概述[J]. 计算机科学与探索, 2022, 16(3): 552-564.

[35] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Commun ACM, 2020, 63(11): 139-144.

[36] KULHARIA V, GHOSH A, MUKERJEE A, et al. Contextual RNN-GANs for abstract reasoning diagram generation[C]// Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. San Francisco, California, USA. New York: ACM, 2017: 1382-1388.

[37] WANG D, WANG X L, REN B Y, et al. Vision-based productivity analysis of cable crane transportation using augmented reality-based synthetic image[J]. J Comput Civ Eng, 2022, 36(1): 04021030.

[38] WANG D, REN B Y, CUI B, et al. Real-time monitoring for vibration quality of fresh concrete using convolutional neural networks and IoT technology[J]. Autom Constr, 2021, 123: 103510.

[39] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137-1149.

[40] KUPYN O, MARTYNIUK T, WU J R, et al. DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul, Korea (South). IEEE, 2020: 8877-8886.

[41] BISWAS K, KUMAR S, BANERJEE S, et al. Smooth Maximum Unit: Smooth activation function for deep networks using smoothing maximum technique[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 794-803.

王栋, 关涛, 杨帅, 王晓玲, 翟海峰, 任炳昱. 空天地一体化感知下的混凝土振捣质量智能监控[J]. 硅酸盐学报, 2023, 51(5): 1219. WANG Dong, GUAN Tao, YANG Shuai, WANG Xiaoling, ZHAI Haifeng, REN Bingyu. Intelligent Monitoring of Concrete Vibration Quality Based on Space-Air-Ground Integrated Perception[J]. Journal of the Chinese Ceramic Society, 2023, 51(5): 1219.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!