压电与声光, 2022, 44 (4): 656, 网络出版: 2022-10-29  

差分环行器的研究进展

Research Progress of Differential Circulator
作者单位
1 西南科技大学 信息工程学院, 四川 绵阳 621010
2 特殊环境机器人技术 四川省重点实验室, 四川 绵阳 621010
3 西南科技大学 微系统中心, 四川 绵阳 621010
摘要
基于时空调制(STM)的单端环行器因其输入信号和调制信号的混合, 在接近所需频带处将受到互调产物(IMP)的影响, 这些IMP不仅会对相邻通道造成干扰, 还会限制调制参数。差分环行器通过匹配两个单端环行器, 以180°相位差的调制信号分别调制两个单端环行器, 从而消除IMP, 有效地改善了环行器的插入损耗、带宽及功率容量等指标, 提高了环行器的性能, 并降低了对调制信号的要求。该文描述了差分环行器的基本原理, 对差分环行器的电路结构、调制方式及测试方法进行了总结。对比分析表明, 差分体声波(BAW)环行器在插入损耗、隔离度及功耗等方面表现出优异的性能, 有望取代大多数商业系统中的铁氧体环行器。
Abstract
The single ended circulator based on the spatiotemporal modulation(STM) will be affected by the intermodulation products(IMP) very close to the required frequency band due to the mixing between RF input and modulation signal. These intermodulation products will not only cause interference to adjacent channels, but also limit the modulation parameters. By matching two single ended circulators, the single ended circulators in the differential circulator are modulated respectively with the modulation signal of 180° phase difference, which can eliminate the IMP, so as to effectively improve the insertion loss, bandwidth and power handling of circulator, improve the performance of circulator, and significantly relax the requirement of the modulation frequency. This paper describes the basic principle of differential circulator, summarizes its circuit structure, modulation and test methods. The comparative analysis shows that BAW differential circulator exhibits excellent performance in insertion loss, isolation and power consumption, and is expected to replace ferrite circulators in most commercial systems.
参考文献

[1] ZHOU J,REISKARIMIAN N,DIAKONIKOLAS J,et al.Integrated full duplex radios[J].IEEE Communications Magazine,2017,55(4): 142-151.

[2] KORD A,SOUNAS D L,AL A.Achieving full-duplex communication: Magnetless parametric circulators for full-duplex communication systems[J].IEEE Microwave Magazine,2017,19(1): 84-90.

[3] ESTEP N A,SOUNAS D L,AL A.On-chip non-reciprocal components based on angular-momentum biasing[C]//Phoenix:2015 IEEE MTT-S International Microwave Symposium,2015:1-4.

[4] FAY C E,COMSTOCK R L.Operation of the ferrite junction circulator[J].IEEE Transactions on Microwave Theory and Techniques,1956,13(1):15-27.

[5] ADAM J D ,DAVIS L E ,DIONNE G F ,et al.Ferrite devices and materials[J].IEEE Transactions on Microwave Theory and Techniques,2002,50(3):721-737.

[6] 邵合理.铁氧体环行器的设计与带外效应的研究[D].成都:电子科技大学,2009.

[7] HELSZAJNJ.Composite-junction circulators using ferrite disks and dielectric rings[J].IEEE Transactions on Microwave Theory & Techniques,1974,22(4):400-410.

[8] BERGMAN J O,CHRISTENSEN C.Equivalent circuit for a lumped-element Y circulator (correspondence)[J].IEEE Transactions on Microwave Theory and Techniques,2003,16(5):308-310.

[9] 袁靖,高杨,任万春.体声波环行器的研究进展[J].压电与声光,2020,42(3): 307-311.

[10] ESTEP N A,SOUNAS D L,SORIC J,et al.Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops[J].Nature Physics,2014,10(12):923-927.

[11] ESTEP N A,SOUNAS D L,SORIC J,et al.Magnetless microwave circulators based on spatiotemporally modulated rings of coupled resonators[J].IEEE Transactions on Microwave Theory and Techniques,2016,64(2):502-518.

[12] KORD A,SOUNAS D L,AL A.Magnet-less circulators based on spatiotemporal modulation of bandstop filters in a delta topology[J].IEEE Transactions on Microwave Theory and Techniques,2018,66(2):911-926.

[13] KORD A,SOUNAS D L,AL A.Differential magnetless circulator using modulated bandstop filters[C]//Honololu:2017 IEEE MTT-S International Microwave Symposium (IMS),2017:384-387.

[14] KORD A,SOUNAS D L,AL A.Pseudo-linear time-invariant magnetless circulators based on differential spatiotemporal modulation of resonant junctions[J].IEEE Transactions on Microwave Theory & Techniques,2017:1-15.

[15] 袁靖.体声波环行器非互易机理和调控优化[D].绵阳:西南科技大学,2021.

[16] KORD A,KRISHNASWAMY H,AL A.Magnetless circulators with harmonic rejection based on n-way cyclic-symmetric time-varying networks[J].Physical Review Applied,2019,12(2):024046-1-024046-14.

[17] TORUNBALCI M M,ODELBERG T J,SRIDARAN S,et al.An FBAR circulator[J].IEEE Microwave and Wireless Components Letters,2018,28(5):395-397.

[18] KORD A,SOUNAS D L,XIAO Z,et al.Broadband cyclic-symmetric magnetless circulators and theoretical bounds on their bandwidth[J].IEEE Transactions on Microwave Theory and Techniques,2018,66(12):5472-5481.

[19] YU Y,MICHETTIET G,KORD A,et al.Magnetic-free radio frequency circulator based on spatiotemporal commutation of MEMS resonators[C]//Belfast:2018 IEEE Micro Electro Mechanical Systems (MEMS),2018:154-157.

[20] YU Y,MICHETTI G,KORD A,et al.Highly-linear magnet-freemicroelectromechanical circulators[J].Journal of Microelectromechanical Systems,2019,28(6):933-940.

[21] KORD A,TYMCHENKO M,SOUNAS D L,et al.CMOS integrated magnetless circulators based on spatiotemporal modulation angular-momentum biasing[J].IEEE Transactions on Microwave Theory and Techniques,2019,67(7):2649-2662.

[22] TORUNBALCI M M,SRIDARAN S,RUBY R,et al.Mechanically modulated microwave circulator[C]//Berlin: IEEE,2019: 713-716.

[23] XU C,PIAZZA G.Magnet-less circulator using AlN MEMS filters and CMOS RF switches[J].Journal of Microelectromechanical Systems,2019,28(3):1-10.

[24] SOUNAS D L,CALOZ C,AL A.Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials[J].Nature Communications,2013,4(1):2407.

[25] FLEURY R,SOUNAS D L,SIECK C F,et al.Sound isolation and giant linearnonreciprocity in a compact acoustic circulator[J].Science,2014,343(6170):516-519.

[26] KORD A,SOUNAS D L,AL A.Microwave Nonreciprocity[J].Proceedings of the IEEE,2020:1-31.

[27] 邹传云.高频电子线路[M].北京: 清华大学出版社, 2012.

[28] TIGGELMAN M P J,REIMANN K,RIJS F V,et al. On the trade-off between quality factor and tuning ratio in tunable high-frequency capacitors[J].IEEE Transactions on Electron Devices,2009,56(9):2128-2136.

张冰滨, 吴昭晔, 高杨. 差分环行器的研究进展[J]. 压电与声光, 2022, 44(4): 656. ZHANG Bingbin, WU Zhaoye, GAO Yang. Research Progress of Differential Circulator[J]. Piezoelectrics & Acoustooptics, 2022, 44(4): 656.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!