人工晶体学报, 2023, 52 (1): 83, 网络出版: 2023-03-18  

AlGaN双势垒结构对高In组分InGaN/GaN MQWs太阳能电池材料晶体质量和发光性能的影响

Influence of AlGaN Double Barrier Structure on Crystal Quality and Luminescent Properties of InGaN/GaN MQWs Solar Cell Materials Containing High Indium Components
作者单位
1 陕西科技大学材料原子·分子科学研究所,西安 710021
2 西安电子科技大学,宽禁带半导体材料教育部重点实验室,西安 710071
3 陕西科技大学材料科学与工程学院,西安 710021
4 西北大学信息科学与技术学院,西安 710127
摘要
本文利用金属有机化合物化学气相沉积(MOCVD)技术在(001)面图形化蓝宝石衬底(PSS)上生长了一种含有AlGaN-InGaN/GaN MQWs (multiple quantum wells)-AlGaN双势垒结构的高In组分太阳能电池外延材料。高分辨率X射线衍射(HRXRD)和光致发光(PL)谱分析表明,与含有AlGaN电子阻挡层的低In组分的量子阱结构太阳能电池外延材料相比,该结构材料具有较小的半峰全宽(FWHM),计算表明:此结构材料的位错密度降低了一个数量级,达到107 cm-2;同时,有源区中的应变弛豫降低了51%;此外,此结构材料的发光强度增强了35%。研究结果表明含有AlGaN双势垒结构的外延材料可以减小有源区的位错密度,降低非辐射复合中心的数目,增大有源区有效光生载流子的数目,为制备高质量太阳能电池提供实验依据。
Abstract
In this paper, a double-barrier structure AlGaN-InGaN/GaN MQWs-AlGaN solar cell materials containing high indium components was grown on (001)-oriented patterned sapphire substrate (PSS) by metal organic chemical vapor deposition (MOCVD) technology. Compared with the MQWs solar cell material containing AlGaN electron barrier structure with low indium, it is found that the material of this structure has a smaller full width at half maximum (FWHM) by high-resolution X-ray diffraction (HRXRD) and photoluminescence (PL) spectroscopy analysis, and the dislocation density of this structural material is also reduced by an order of magnitude to 107 cm-2 by the dislocation density formula; at the same time, the strain relaxation in the active region decreases by 51%. In addition, luminous intensity of this structural material is enhanced by 35%. The results show that the epitaxial material containing AlGaN double barrier structure can reduce the dislocation density in the active region, decrease the number of non-radiative recombination centers, and increase the number of effective photo-generated carriers in the active region, which provides experimental basis for the preparation of high efficiency solar cells.
参考文献

[1] 周 梅,赵德刚.p-InGaN层厚度对p-i-n结构InGaN太阳电池性能的影响及机理[J].发光学报,2015,36(5):534-538.

[2] TSAI Y L, LIN C C, HAN H V, et al. Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors[J]. Solar Energy Materials and Solar Cells, 2013, 117: 531-536.

[3] 郭振兴.InGaN/GaN多量子阱太阳能电池研究[D].西安:西安电子科技大学,2015.

[4] TAO H C, XU S R, ZHANG J C, et al. Numerical investigation on the enhanced performance of N-polar AlGaN-based ultraviolet light-emitting diodes with superlattice p-type doping[J]. IEEE Transactions on Electron Devices, 2019, 66(1): 478-484.

[5] 赖萌华,张保平.InGaN/GaN量子阱太阳能电池研究进展[J].厦门大学学报(自然科学版),2015,54(5):652-664.

[6] VAN DEN BROECK D M, BHARRAT D, HOSALLI A M, et al. Strain-balanced InGaN/GaN multiple quantum wells[J]. Applied Physics Letters, 2014, 105(3): 031107.

[7] TAWFIK W Z, HYEON G Y, LEE J K. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes[J]. Journal of Applied Physics, 2014, 116(16): 164503.

[8] 单恒升.InGaN太阳能电池研制及其辐照效应研究[D].西安:西安电子科技大学,2018.

[9] JIANG C Y, CHEN Y, SUN J M, et al. Enhanced photocurrent in InGaN/GaN MQWs solar cells by coupling plasmonic with piezo-phototronic effect[J]. Nano Energy, 2019, 57: 300-306.

[10] DAHAL R, LI J, ARYAL K, et al. InGaN/GaN multiple quantum well concentrator solar cells[J]. Applied Physics Letters, 2010, 97(7): 073115.

[11] HUANG X Q, CHEN H, FU H Q, et al. Energy band engineering of InGaN/GaN multi-quantum-well solar cells via AlGaN electron- and hole-blocking layers[J]. Applied Physics Letters, 2018, 113(4): 043501.

[12] MIYOSHI M, OHTA M, MORI T, et al. A comparative study of InGaN/GaN multiple-quantum-well solar cells grown on sapphire and AlN template by metalorganic chemical vapor deposition[J]. Physica Status Solidi (a), 2018, 215(10): 1700323.

[13] 王小丽,王文新,江 洋,等.具有超晶格应力调制结构的绿光InGaN/GaN多量子阱的发光特性[J].发光学报,2011,32(11):1152-1158.

[14] MATIOLI E, NEUFELD C, IZA M, et al. High internal and external quantum efficiency InGaN/GaN solar cells[J]. Applied Physics Letters, 2011, 98(2): 021102.

[15] HUANG X Q, FU H Q, CHEN H, et al. Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency[J]. Applied Physics Letters, 2017, 110(16): 161105.

[16] SHAN H S, LI X Y, CHEN B, et al. Effect of indium composition on the microstructural properties and performance of InGaN/GaN MQWs solar cells[J]. IEEE Access, 7: 182573-182579.

[17] HO I H, STRINGFELLOW G B. Solid phase immiscibility in GaInN[J]. Applied Physics Letters, 1996, 69(18): 2701-2703.

[18] 井 亮.InGaN/GaN太阳能电池基础研究[D].北京:中国科学院大学,2020.

[19] 鲁 麟,李明潮,许福军,等.In组分梯度渐变的n-i-p结构InGaN太阳能电池性能研究[J].发光学报,2016,37(6):682-687.

[20] XING C, YU H B, REN Z J, et al. Performance improvement of AlGaN-based deep ultraviolet light-emitting diodes with step-like quantum barriers[J]. IEEE Journal of Quantum Electronics, 2020, 56(1): 1-6.

[21] JIA C Y, YU T J, LU H M, et al. Performance improvement of GaN-based LEDs with step stage InGaN/GaN strain relief layers in GaN-based blue LEDs[J]. Optics Express, 2013, 21(7): 8444-8449.

单恒升, 李明慧, 李诚科, 刘胜威, 梅云俭, 宋一凡, 李小亚. AlGaN双势垒结构对高In组分InGaN/GaN MQWs太阳能电池材料晶体质量和发光性能的影响[J]. 人工晶体学报, 2023, 52(1): 83. SHAN Hengsheng, LI Minghui, LI Chengke, LIU Shengwei, MEI Yunjian, SONG Yifan, LI Xiaoya. Influence of AlGaN Double Barrier Structure on Crystal Quality and Luminescent Properties of InGaN/GaN MQWs Solar Cell Materials Containing High Indium Components[J]. Journal of Synthetic Crystals, 2023, 52(1): 83.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!