光学学报, 2024, 44 (1): 0106025, 网络出版: 2024-01-12  

多阶时域差分重构相关法拉曼分布式光纤传感

Raman Distributed Optical Fiber Sensing Based on Multi-Order Time-Domain Differential Reconstruction Correlation
作者单位
1 太原理工大学电子信息与光学工程学院,山西 太原 030024
2 太原理工大学物理学院,山西 太原 030024
3 太原理工大学新型传感器与智能控制教育部重点实验室,山西 太原 030024
摘要
提出了一种基于多阶时域差分重构相关法的拉曼分布式光纤传感技术。该方案利用混沌信号、放大自发辐射(ASE)信号和噪声信号代替传统脉冲激光作为传感信号,基于多阶时域差分重构方法重构拉曼反斯托克斯散射信号,以此剥离出各个传感光纤位置点携带探测信号时序随机起伏特征的光强信息。最后基于相关压缩解调方法,揭示了拉曼散射温度调制光场空间位置与探测信号的相关特性。从理论上将时域差分重构方法推广至任意阶数,分析了差分阶数对传感系统信噪比的影响,并分析了面向混沌拉曼分布式光纤传感技术的最优差分阶数。研究了混沌信号、噪声信号、ASE信号这三种信号作为探测信号时拉曼传感系统的数值模拟情况,结果证明了拉曼光纤传感领域混沌信号在动态范围与信噪比方面具有显著优势,为长传感距离、高空间分辨率和高信噪比拉曼分布式光纤传感技术提供了新的研究思路。
Abstract
Objective

Raman distributed optical fiber sensing technology has scientific significance across various fields due to its unique ability to perform distributed measurements of spatial ambient temperature fields. However, the spatial resolution of existing Raman distributed optical fiber sensing with a detection range extending to kilometers is constrained to the meter level due to the physical limitations of the optical time domain reflection positioning principle, which relies on the pulse time-of-flight method. Therefore, we introduce an innovative Raman distributed optical fiber sensing approach based on a multi-order time-domain differential reconstruction correlation method. In this novel method, we replace the conventional pulse laser with chaotic, amplified spontaneous emission (ASE), and noise signals as the sensing sources, and then employ a multi-order time-domain differential reconstruction technique to reconstruct the Raman anti-Stokes scattering signal. This reconstruction process enables us to extract intensity information from each sensing fiber position point and thus capture the random fluctuation characteristics of detection signal timings. To further optimize the proposed approach, we employ a correlation compression demodulation method to unveil the correlation between the spatial position of the Raman scattering temperature-modulated light and the detection signal. Notably, our scheme diverges from the traditional optical time-domain reflection positioning principle, opting instead for the correlation positioning principle. This shift allows us to overcome the physical constraints associated with the pulse width of conventional light sources, thereby elevating the spatial resolution of the sensing technology from the traditional meter-scale performance to the centimeter level.

Methods

The simulation model adopts intricate pulse signals as the detection signals, including chaotic pulse signals, noise pulse signals, and ASE pulse signals. This model bifurcates into two beams using a haloscope, with one beam serving as the reference signal and the other functioning as the detection signal, and subsequently they enter the sensing fiber via a wavelength division multiplexer (WDM). During experimentation, a small segment of the sensing fiber experiences ambient temperature changes, designated as the detection fiber (FUT), while the remaining portion is still in a constant temperature environment. A WDM filters out Raman anti-Stokes scattering signals at 1450 nm wavelength. Subsequently, the Raman anti-Stokes scattered signal undergoes multi-order time-domain differential reconstruction followed by correlation with the reference signal, which facilitates the demodulation of temperature change information within the detection fiber. In the initial multi-order time-domain differential reconstruction, the Raman anti-Stokes scattered signal excited within the sensing fiber is subjected to the process. Based on the random amplitude characteristics of the complex signal timing, this procedure allows for the isolation of the Raman anti-Stokes signal from each data point location on the sensing fiber. Consequently, each data point of the reconstructed signal exclusively contains the scattered signal intensity information of an individual location point, as opposed to encompassing the light intensity information of all signals within the length corresponding to the pulse width in the OTDR positioning principle under the traditional scheme. Finally, the system employs relevant compression demodulation technologies, enabling the compression of scattering intensity information from all data points within FUT to the FUT's start and end positions. The precise compression facilitates the accurate determination of detailed FUT positions.

Results and Discussions

The chaotic signal exhibits a higher incoming fiber optical power and more significant random amplitude fluctuations, facilitating the extraction of Raman anti-Stokes light intensity at various fiber points by multi-order time-domain differential reconstruction. This contributes to an enhanced signal-to-noise ratio (SNR) within the Raman distributed sensing system, grounded in a complex signal correlation method (Fig. 2). All three signal sensing schemes adeptly pinpoint the FUT's position and length information. Notably, at temperature mutation points within the FUT region, we observe a pair of positively and negatively correlated peaks. Remarkably, the SNR of the chaotic signal-based sensing scheme surpasses that of both the ASE signal sensing scheme and noise signal sensing scheme (Fig. 4). The spatial resolution of the Raman distributed optical fiber sensing system is predicated on complex signal correlation hinges on the half-height full width (FWHM) of the autocorrelation function of the sensing detection signal. Our analysis of the autocorrelation results and spectral characteristics of three complex signal timings reveals that the employed FWHM of the three complex signal autocorrelation functions is 0.01 ns. Consequently, the theoretical spatial resolution is 1 mm (Fig. 5). We also observe a positive correlation between the differential order and the peak-to-peak value of positive correlation, which signifies a substantial improvement in the system's SNR within a certain range of increasing order. The optimal SNR for the chaotic sensing scheme occurs when the differential reconstruction order is set to the 5, surpassing the peak coefficient of 5.04 dB observed in the first-order case (Fig. 6). Furthermore, we find that the FUT's positively correlated peak-to-peak values demonstrate linear correlation with temperature (0.323 for every 1 K temperature increase in the above-mentioned simulation conditions). The correlation highlights the utility of positively correlated peaks for precise temperature change demodulation. We successfully achieve accurate demodulation of spatial localization and temperature for FUTs with 353 K and 373 K, featuring two 0.05 m lengths and 0.05 m intervals (Fig. 7).

Conclusions

We present a novel Raman distributed fiber sensing technology, which utilizes the multi-order time-domain differential reconstruction correlation method to enhance the spatial resolution and SNR performance in traditional Raman distributed optical fiber sensing systems. Furthermore, the correlation compression demodulation method is adopted to elucidate the spatial distribution of the Raman scattering temperature-modulated light field. Significantly, our approach supersedes the conventional optical time-domain reflection localization principle by adopting the correlation positioning principle, thus overcoming the spatial resolution constraints imposed by the pulse width of traditional light sources. As a result, the traditional meter-level sensing spatial resolution is theoretically elevated to the centimeter level. Meanwhile, we extend the theoretical framework of the differential reconstruction scheme to encompass any order and scrutinize the influence of differential order on the sensing system's SNR. Numerical simulations demonstrate that our method can extract more temperature information, encompassing the detection fiber region without compromising the sensing spatial resolution. Furthermore, it amplifies the SNR of the sensing signal by multiplying the scattered signal correlation peak's amplification effect. Additionally, it reduces the temperature signal crosstalk in the non-detection optical fiber region during the demodulation, enhancing the SNR of the Raman distributed optical fiber sensing system. Finally, we demonstrate the significant advantages of chaos signals in Raman sensing and introduce a fresh research perspective for Raman distributed optical fiber sensing technology.

1 引言

自1928年印度物理学家拉曼在《自然》期刊上发表了一篇题为A New Type of Secondary Radiation1的论文后,拉曼散射效应引起了国内外研究学者的广泛关注2-5。拉曼分布式光纤传感技术是基于光纤拉曼散射效应来实现分布式温度检测,由于光纤拉曼散射效应具有温度单一敏感性,因此被广泛用于油气井、隧道和管道等大型基础设施结构的温度安全检测领域6-13

在拉曼分布式光纤传感技术中,空间分辨率表示系统沿传感光纤测量分布式温度场时可以精准解调的最小空间长度单元14。传统拉曼分布式光纤传感技术以脉冲信号作为传感信号15-20,基于脉冲时间飞行法的光时域反射(OTDR)定位原理。基于这种定位原理,采集系统在传感光纤任一位置处采集的拉曼反斯托克斯散射信号并不是该位置点的单点光强信息,而是整个脉冲宽度长度内所有拉曼反斯托克斯散射信号强度信息的叠加21。这种物理现象将会导致当两个不同探测光纤温度区域的距离小于脉冲宽度时,系统难以识别它们的具体位置信息,这也是现有拉曼分布式传感技术空间分辨率受限于脉冲宽度的主要物理瓶颈。此外,传统拉曼分布式光纤传感技术常用的传感光纤为多模传感光纤22-24,脉冲宽度会随传感距离的增加而逐渐展宽,这将导致在km量级传感距离的传感光纤末端,其传感空间分辨率将会被恶化至几米甚至几十米25-26。这种传感空间分辨率性能很难满足当前的应用要求。

直接压缩光源脉宽可以提高基于脉冲时间飞行定位原理系统的传感空间分辨率27。然而,这种压缩脉宽方案会导致传感系统信噪比(SNR)恶化,从而影响传感距离和测量精度28。这种现象也反映在其他基于OTDR定位原理的分布式光纤传感系统,如瑞利OTDR系统29和布里渊OTDR系统30。因此,现有拉曼分布式光纤传感技术存在系统探测距离(信噪比)和传感空间分辨率无法兼顾的技术瓶颈9。例如,Ososkov等31通过直接压缩脉宽提出了一种基于超短脉冲锁模光纤激光器的拉曼分布式光纤传感方案。实验结果表明,该方案可以实现10 cm的传感空间分辨率,但其探测距离仅为3.0 m。

为了在保持高信噪比(或长传感距离)的前提下进一步优化拉曼分布式光纤传感技术的传感空间分辨率,研究人员提出了多种先进的光学解决方案32-38,其中包括基于单模光纤传感的脉冲编码调制方案27-29和特种光纤传感解调方案35-37。基于单模光纤的脉冲编码调制方案通过抑制光纤非线性效应增加入射光纤的光通量。单模光纤传感可以保证空间分辨率不会随探测距离的增加而恶化。例如,Sun等32提出了一种遗传优化的非周期编码方案,在39.0 km的探测距离上获得了1.0 m的传感空间分辨率。特种光纤传感方案主要包括少模光纤传感技术35-36和单模低水峰光纤传感技术37。相比于单模光纤,这些特种光纤具有更大的模场面积和更高的非线性拉曼散射阈值,可以实现更高的入射光功率,进而提高系统信噪比。因此,与单模光纤传感方案相比,特种光纤可以在不严重恶化传感空间分辨率性能的前提下提高散射信号信噪比。例如,Wang等36提出了一种梯度折射率少模光纤传感方案,在25.0 km的传感距离上实现了1.13 m的传感空间分辨率。Wu等37基于低水峰光纤在24.0 km的传感距离上实现了1.0 m的传感空间分辨率。

但是,上述传感方案的定位原理(OTDR定位原理)并未改变,致使现有拉曼分布式光纤传感技术均无法在km级传感距离上突破m量级传感空间分辨率。基于此,太原理工大学Li等[21]提出了一种基于斜率辅助解调技术的拉曼分布式光纤传感系统21,该系统可以在m量级空间分辨率下实现cm量级温度区域的高精度测量,但其m量级传感空间分辨率并未改变。为了实现优于m量级的传感空间分辨率,2021年,本课题组38提出了混沌拉曼分布式传感理论模型,研究了混沌信号与拉曼散射效应相结合的理论可能性。但是在实验中,该模型具有较低的散射信号信噪比,在1.4 km的传感距离上仅实现了30 cm的传感空间分辨率39

基于此,本文进一步提出了一种基于复杂信号传感的多阶时域差分重构和相关压缩解调方案,该方案分别通过混沌信号、ASE信号和噪声信号作为探测信号,首先对传感光纤激发的拉曼反斯托克斯散射信号进行散射信号解析与重构,然后基于探测信号时序的随机起伏特性,通过多阶时域差分重构剥离出各个位置点携带探测信号时域特征的拉曼反斯托克斯散射信号。最后基于参考信号和重构信号的相关压缩方法得到了传感光纤沿线的高空间分辨率温度变化信息。在不改变系统采样率的前提下,多阶时域差分重构方法可以实现相关峰峰值系数倍增效应,在保证系统高空间分辨率的前提下,进一步提高了所提出相关解调系统的信噪比性能。

2 基本原理

2.1 多阶时域差分重构相关法拉曼分布式传感方案

为解决传统拉曼分布式光纤传感方案的空间分辨率受限于传感光源脉冲宽度且散射信号较弱的技术瓶颈,提出了一种基于多阶时域差分重构相关法的拉曼分布式光纤传感方案。本方案包含基于复杂脉冲激光探测信号的多阶时域差分重构和相关压缩解调方案。图1展示了该系统的仿真模型和解调方案,图1(a)中,仿真模型以复杂脉冲信号(本文以混沌脉冲信号、噪声脉冲信号和ASE脉冲信号为主)作为探测信号,脉冲信号通过光耦合器分为两束,一束作为参考信号,一束作为探测信号,经波分复用器(WDM)注入传感光纤。实验过程中,改变其中一小段传感光纤的环境温度,将此光纤作为探测光纤(FUT),其余传感光纤置于恒温环境条件下。波分复用器(WDM)可以滤出波长为1450 nm的拉曼反斯托克斯散射信号。通过对拉曼反斯托克斯散射信号进行多阶时域差分重构并与参考信号进行相关运算,即可解调出探测光纤的温度变化信息。图1(b)中首先对传感光纤中激发的拉曼反斯托克斯散射信号进行多阶时域差分重构,这可以基于复杂信号时序的随机振幅特性剥离传感光纤各个位置数据点的拉曼反斯托克斯信号,使得重构信号的每个数据点只包含单个位置点的散射信号强度信息,而不是像传统方案基于OTDR定位原理中脉冲宽度所对应长度内全部信号的光强信息叠加。最后系统利用相关压缩解调技术,该技术可以将FUT中所有数据点的散射强度信息压缩至FUT起始位置和终点位置,可精准定位FUT。

图 1. 多阶时域差分重构相关法拉曼分布式光纤传感方案。(a)系统仿真模型;(b)多阶时域差分重构和相关压缩解调方案

Fig. 1. Raman distributed optical fiber sensing scheme based on multi-order time domain differential reconstruction correlation method. (a) System simulation model; (b) multi-order time-domain differential reconstruction and correlated compression demodulation schemes

下载图片 查看所有图片

2.2 多阶时域差分重构原理

拉曼反斯托克斯散射信号的强度可表示为

IL=Kaλ-4PRasTexp-α0+αasL

其中

RasT=exphΔv/kT-1-1

式(1)、(2)中各参数物理含义如表1所示。

表 1. 拉曼反斯托克斯散射信号公式各参数物理含义

Table 1. Physical meaning of Raman anti-Stokes scattering signal equation

ParameterPhysical meaningParameterPhysical meaning
IRaman anti-Stokes signal intensityLLocation in the fiber
KaRaman anti-Stokes signal coefficienthPlanck constant
λRaman anti-Stoke signal wavelengthΔvRaman frequency shift
PIncident powerkBoltzmann constant
α0asTransmission lossTTemperature

查看所有表

实际上,基于OTDR定位原理,采集系统采集到传感光纤某一位置处拉曼反斯托克斯信号的光强信息并不只受传感光纤该位置点的环境温度调制,而是受传感光源脉宽长度内传感光纤沿线所激发拉曼散射信号全部光强的累加信息所调制。但是传统拉曼反斯托克斯散射信号公式并未考虑上述因素的影响。

混沌激光信号、ASE信号和噪声信号等复杂信号的时序具有随机振幅特性,即单位脉冲宽度内每个数据点Pi具有不同的幅值特征,因此,将脉冲宽度为W的脉冲信号注入传感光纤,传感光纤L位置处的拉曼反斯托克斯散射信号强度可以表示为

I(L)=Kaλ-4i=1WPiRasTL-ic2n0exp-α0+αasL-ic2n0

式中:c为真空中光速;n0为传感光纤的折射率;i为采样点;TL-ic2n0为采样点的温度。对拉曼反斯托克斯散射信号进行多阶差分重构处理,其一阶差分重构信号可表示为

FL,i= IL+iΔtc2n0-IL

式中:Δt为单位采样时间。将式(4)推广至j阶的情况:

FL,i,j = IL+jiΔtc2n0-IL

将探测光纤温度区域的温度设置为T1,非探测光纤温度区域的温度设置为T0,温变区起始位置距光纤起始位置的长度设置为L1,终点位置距光纤起始位置的长度设置为L2,系统采样率设置为fs,经多阶时域差分重构处理后,得到重构拉曼反斯托克斯散射信号FL,i,j)为

FL,i, j=Ka λ-4RasT1-RasT0PL+jiΔtc2n0φL+jiΔtc2n0-PLφL+ΔφL,L1<L<L1+Wfs  Ka λ-4RasT0-RasT1PL+jiΔtc2n0φL+jiΔtc2n0-PLφL+ΔφL,L2-Wfs<L<L2 ΔφL,else

式中:fs为系统采样率;φLΔφL可以分别表示为

φL=exp-α0+αasLΔφL=Kaλa-4P×RasT0×φL-φL-Δtc2n0

式(6)可以得到,多阶时域差分重构方法可以对拉曼后向散射信号进行重构分析,以剥离出拉曼反斯托克斯后向散射信号中各个位置数据点(脉宽长度内)的光强叠加信息,使得重构信号中的每个数据点只包含传感光纤一个位置点的温度信息。因此,时域差分重构后的拉曼反斯托克斯散射信号仅受环境温度信号调制,使得采集系统采集的任意位置点的光强信息不受脉宽长度内光强叠加特性的影响,避免了传统系统基于光时域反射原理时不同位置光强数据叠加导致温度解调信号串扰的问题。此外,时域差分重构后的信号强度F与阶数j正相关,一阶时域差分重构时,相邻数据点时域差分重构后数据差异较小,经多阶时域差分重构后,离散数据点的差异可以被有效放大,即提高了重构信号强度,且通过利用每个数据点的信息,最终提高了系统信号的信噪比。

2.3 相关压缩定位解调方案

本文所提出的相关压缩定位方案是利用复杂脉冲探测信号作为参考信号,将其与多阶时域差分重构信号进行相关解调运算,其详细解调方案如下所述:当参考信号延迟t0并与FUT区域内传感光纤位置处多阶差分重构信号进行相关运算时,相关方案会在FUT的起始位置处激发一个正相关峰。参考信号延迟t1并与光纤突变位置B处的重构信号进行相关运算时,会激发一个负相关峰,根据这两个相关峰的延时差值即可计算出探测光纤区域的长度信息:

ΔL=t1-t0×c2n0

在温度解调过程中,正相关峰峰值系数是通过参考信号和被温度突变区域正向调制的多阶差分重构信号所激发形成,该相关峰的峰值系数受环境温度所调制。因此,可以基于正相关峰的峰值系数解调FUT区域的具体温度信息,其正相关峰的峰值系数的表达式为

Cpeaka=i=1N-a-1Irefi+aFa,T

式中:a为采样点数;N为参考信号数据点总点数,N=W·fsIref为参考信号,可表示为

Irefi=Pi , 1iWfs

对比式(6)可看出:正相关峰峰值系数与差分阶数呈正相关关系,通过提高阶数可以获得更高的正相关峰峰值,即可以得到更高的系统信噪比。因此,为了更精准地解调温度信息,本文引入混沌自相关系数Am)的概念,Am)可表示为

Am=i=1W-mfsPi+mfsPi

式中:m=t1-t0,为FUT区域延时长度。则FUT区域的混沌相关系数ΔApm)可表示为

ΔApm=A0-Am=i=1WfsPiPi-i=1W-mfsPi+mfsPi,            m<W/2A0=i=1WfsPiPi,                                                                     mW/2

联立式(6)~(13)可得FUT的解调温度:

T=hΔvkln1+Cpeak-i=1WfsPiΔφL1Kaλa-4ΔApmφL1+1exphΔv/kT0-1-1

3 仿真结果分析

为验证本文所提出的多阶时域差分重构方案的可行性以及多种复杂信号的优劣性,利用Matlab软件,基于图1(a)与式(3)构造了多阶时域差分重构拉曼分布式光纤传感仿真模型,进行了一系列数值模拟。

3.1 定位结果分析

本文基于相关压缩解调进行传感光纤沿线FUT区域的温度信号定位。该方案将入射进入传感光纤的探测信号作为参考信号,然后将此参考信号与经多阶时域差分重构技术处理后的拉曼反斯托克斯散射信号进行相关运算。最后通过获取相关峰的延迟时间联合重构信号交叠时间获得FUT区域温度信号的精确位置。

采集了混沌信号、ASE信号以及噪声信号(三种典型时序呈现随机起伏振荡特性的复杂信号)三种信号的时序,并对比分析三种信号的时序特征。图2展示了三种典型复杂信号的时序,可以看出混沌光具有更大的峰值振幅波动(2.6 V),大于ASE 信号(0.13 V)和噪声信号(0.12 V),这表明混沌信号具有更高的入纤光功率和更大的随机振幅波动,有利于上述多阶时域差分重构对光纤沿线各位置点拉曼反斯托克斯光强的剥离和提取,更加有助于提升基于复杂信号相关法的拉曼分布式传感系统的信噪比。

图 2. 三种典型传感信号的时序特征。(a)混沌信号时序;(b)ASE信号时序;(c)噪声信号时序

Fig. 2. Timing characteristics of three typical sensing signals. (a) Chaos signal timing; (b) ASE signal timing; (c) noise signal timing

下载图片 查看所有图片

在本文所设置的仿真模型中,探测信号为三种中心波长为1550 nm的复杂信号(其激发的拉曼反斯托克斯后向散射中心波长均为1450 nm),探测功率由复杂信号时序决定,脉冲宽度为50 ns。光耦合器分光比为1∶1。传感光纤为长度为1.0 km的多模光纤。本文方案中空间分辨率与脉冲宽度无关,避免了光纤中色散引起的脉冲展宽导致的空间分辨率恶化的问题,所以本文方案的空间分辨率不受光纤种类影响。标准单模光纤也可以实现多阶时域差分重构相关法。但相较于标准单模光纤,多模光纤具有更大的拉曼散射信号增益与受激拉曼散射阈值,被广泛应用于拉曼分布式传感系统中。在传感光纤的500 m位置处设置两个长度为5.0 cm、温度为353 K的FUT区域,这两个FUT区域间隔为5.0 cm,然后分别使用混沌信号、ASE信号以及噪声信号作为探测信号构造拉曼后向散射信号模型。基于式(3)构造该模型下的拉曼反斯托克斯散射信号,模型具体参数值如表2所示。

表 2. 仿真模型参数

Table 2. Parameters of simulation model

ParameterPhysical meaningValue
KaRaman anti-Stokes signal coefficient3.06641×10-9
λRaman anti-Stokes signal wavelength1450 nm
α0asTransmission loss1.18 dB/km
ΔvRaman frequency shift13.2 THz
n0Refractive index of the fiber1.5
WWidth of pulse50 ns
fsSampling rate20 GSa/s

查看所有表

构造出的拉曼散射信号特征如图3所示,该数值模型中未添加任何噪声,不需要进行额外的去噪处理,因此本文所提出的模型并未采用任何去噪方法。图3(a)~(c)分别为基于混沌信号、ASE信号和噪声信号调制所激发的拉曼反斯托克斯散射信号。基于这三种信号探测的拉曼反斯托克斯散射信号与传统基于常规脉冲信号的拉曼反斯托克斯散射信号基本保持一致,其散射信号呈现衰减特性,且在传感光纤的500 m位置处出现了由FUT环境温度调制所产生的温度信号包络,但FUT的具体长度与温度信息被淹没在了温度包络上升沿中,需进一步进行多阶时域差分重构与相关压缩解调处理才能精准得到FUT的详细信息。如前所述,由于混沌信号具有更大的峰值振幅波动(2.6 V),即更高的入纤峰值功率与更大的随机振幅波动,因此,混沌信号的后向散射动态范围相比ASE信号和噪声信号大8.09 dB。拉曼后向散射动态范围直接决定了拉曼分布式传感系统最长传感距离,根据三种信号后向散射动态范围(混沌信号动态范围为13.21 dB,ASE信号与噪声信号为5.12 dB),基于混沌信号的传感系统的最长传感距离为11.2 km,基于ASE与噪声信号的传感系统的最长传感距离为5.12 km。

图 3. 不同信号拉曼反斯托克斯散射信号构造结果。(a)混沌信号;(b)ASE信号;(c)噪声信号;(d)拉曼反斯托克斯散射信号动态范围比较

Fig. 3. Results of Raman anti-Stokes scattering signal construction with different signals. (a) Chaos signal; (b) ASE signal; (c) noise signal; (d) comparison of dynamic ranges of Raman anti-Stokes scattering signal

下载图片 查看所有图片

基于式(6),对整条传感光纤沿线的拉曼反斯托克斯信号进行多阶时域差分重构,重构后的拉曼反斯托克斯信号会与其注入传感光纤的参考信号呈现明显的相关特性。然后通过相关压缩解调方法对其重构的拉曼反斯托克斯散射信号进行相关解调(其实质为被FUT区域温度正向、反向调制的后向散射信号与参考信号进行相关处理),FUT区域两端位置处会分别形成一个正相关峰和一个负相关峰。最后基于这两个正、负相关峰的位置信息可以精准定位FUT区域的长度。为了证明所提出方案可以精确定位出FUT的位置及长度信息,利用式(4)~(11)建立了一个传感光纤沿线突变温度信号的定位仿真模型,具体仿真结果如图4所示。结果显示,三种信号传感方案均能准确定位出FUT位置与长度信息,FUT区域温度突变点位置均对应出现了一对正负相关峰。结果表明,所提出的多阶时域差分重构和相关压缩方案可以实现km级传感距离上cm级区域的精准定位测量。但在同一温度调制下,混沌传感方案所激发的FUT正相关峰峰值比另外两种传感信号所激发的正相关峰峰值高26 dB,且非FUT区域的相关信号曲线更为平滑,这表明基于混沌信号的传感方案的信噪比要优于ASE信号传感方案与噪声信号传感方案。

图 4. 定位解调结果。(a)混沌光信号相关结果;(b)ASE信号相关结果;(c)噪声信号相关结果

Fig. 4. Position demodulation results. (a) Chaos optical signal correlation result; (b) ASE signal correlation result; (c) noise signal correlation result

下载图片 查看所有图片

3.2 空间分辨率分析

本文基于复杂信号相关法的拉曼分布式光纤传感系统的传感空间分辨率取决于传感探测信号自相关函数的半峰全宽(FWHM)。图5展示了三种复杂信号时序的自相关结果及频谱特性,从图5可以得出本文所使用的这三种复杂信号自相关函数的FWHM均为0.01 ns,其理论空间分辨率均可以达到1 mm。由于本方案的空间分辨率与脉冲宽度无关,所以系统空间分辨率不会随着传感距离的延长而恶化,即在最大传感距离(对于混沌信号,最大传感距离为11.2 km;对于ASE信号与噪声信号,最大传感距离为4.34 km)处均可实现1 mm的空间分辨率。但如图5(a2)、5(b2)与5(c2)所示,相比ASE信号与噪声信号,混沌信号的频谱更加平坦且拥有更大的有效带宽。此外,如图2所示,ASE信号、噪声信号的时序振幅峰值均小于混沌信号。因此,这两种信号作为探测信号会导致系统的动态范围和系统信噪比均小于混沌拉曼分布式传感系统,所以混沌拉曼分布式传感系统具有更大的实际应用价值。

图 5. 传感信号频谱及时序自相关特性。(a1)混沌信号自相关曲线;(b1)ASE信号自相关曲线;(c1)噪声信号自相关曲线;(a2)混沌信号频谱;(b2)ASE信号频谱;(c2)噪声信号频谱

Fig. 5. Sensing signal spectra and timing autocorrelations. (a1) Chaos signal autocorrelation curve; (b1) ASE signal autocorrelation curve; (c1) noise signal autocorrelation curve; (a2) chaotic signal spectrum; (b2) ASE signal spectrum; (c2) noise signal spectrum

下载图片 查看所有图片

3.3 多阶时域差分重构阶数对信噪比的影响

多阶时域差分重构方法除了可以将复杂信号随机特性剥离出来,还可以克服后向拉曼散射信号中某一位置的信号叠加的限制,提升重构信号的强度,实现相关峰峰值倍增,从而提升传感信号信噪比。本方法产生的相关峰由FUT长度范围内携带温度变化信息的拉曼反斯托克斯散射信号在时域中被压缩至FUT起始位置形成,其在此位置产生倍增的拉曼温度效应。同时,基于时域差分重构技术的重构拉曼反斯托克斯信号可以减小非温度突变区域对重构信号的影响,使其FUT区域受环境温度调制的拉曼反斯托克斯散射信号的信噪比进一步提高。因此,本文所提出的方案不仅可以消除后向拉曼散射信号在脉宽长度内信号串扰的问题,还可以提升传感系统的信噪比性能。

进一步进行了数值仿真模拟,在同一FUT调制情况(环境温度和FUT长度均相同)下,进行了1~5阶的时域差分重构数值模拟,这三种复杂信号的数值模拟结果如图6所示,对比发现差分阶数与正相关峰峰值正相关,即在一定范围内提升阶数对系统信噪比有明显提升。在差分重构阶数为5时混沌传感方案的信噪比为最优值,比1阶情况下的峰值系数大5.04 dB,而其他两种方案的正相关峰值在2阶达到最优值,随着差分阶数的增加,正相关峰出现了波动、下降和展宽问题,这使其难以对FUT实现精准定位和温度解调。因此,混沌信号作为传感光源的温度解调在系统信噪比提升方面有着更加明显的优势。

图 6. 不同传感信号方案的时域差分重构阶数对相关峰峰值的影响。(a)混沌信号传感方案相关结果;(b)ASE信号传感方案相关结果;(c)噪声信号传感方案相关结果;(d)混沌信号方案差分重构阶数对相关峰峰值的影响;(e)ASE信号方案差分重构阶数对相关峰峰值的影响;(f)噪声信号方案差分重构阶数对相关峰峰值的影响

Fig. 6. Effect of time-domain differential reconstruction order on correlated peak-to-peak for different sensing signal schemes. (a) Results of chaotic signal sensing schemes; (b) results of ASE signal sensing schemes; (c) results of noise signal sensing schemes; (d) influence of differential reconstruction order of chaotic signal scheme on correlated peak-to-peak; (e) influence of differential reconstruction order of ASE signal scheme on correlated peak-to-peak; (f) influence of differential reconstruction order of noise signal scheme on correlated peak-to-peak

下载图片 查看所有图片

3.4 温度解调结果分析

本文所提出的基于多阶时域差分重构相关法的拉曼分布式光纤传感技术利用正相关峰峰值系数提取传感光纤沿线的温度突变信息。为了验证该方案的可行性,建立了一个温度解调仿真模型,具体仿真模型如下。

将时域差分重构信号F与参考信号I进行相关运算,可得到相关曲线,利用正相关峰峰值Cpeak与式(15)进行温度解调。为验证正相关峰值可用于解调光纤沿线温度信息,同时验证式(15),本文进行了两个数值模拟。模拟1:在传感光纤的500 m位置处设置了0.05 m的FUT,以5 K的温度步进从293 K逐步增加FUT的温度至393 K,其余光纤置于293 K的环境温度条件下。模拟2:在传感光纤的500 m处设置了两个间距为0.05 m、温度分别为353 K和373 K的FUT,其余传感光纤置于293 K的环境温度条件下。本文工作基于多模传感光纤(衰减和损耗等参数已知的情况下)进行数值模拟,所以温度测量前不需要进行定标处理。利用式(15)进行温度解调。图7(a)展示了模拟1的结果,FUT正相关峰峰值与温度呈线性相关(在上述仿真条件下温度每升高1 K,正相关峰峰值增加0.323),证明正相关峰可以用于精准解调温度变化。图7(b)展示了模拟2中的两个FUT的空间定位和温度解调结果,可以看出温度为353 K和373 K、两个长度为0.05 m的FUT空间定位和温度值均得到准确解调,这验证了复杂信号多阶时域差分重构和相关压缩定位解调温度的正确性。

图 7. 温度解调结果。(a)正相关峰峰值与FUT温度的关系;(b)双FUT温度解调实验结果

Fig. 7. Temperature demodulation results. (a) Relationship of positively correlated peak and FUT temperature; (b) results of double FUT temperature demodulation experiment

下载图片 查看所有图片

本文的主要工作基于数值模拟展开,实验中传感信号所激发的拉曼散射信号的随机振幅特性和宽带特性的探测表征都与所用光电探测器件的探测带宽有关。目前该方案能够探测到拉曼散射信号(强度为nW量级)的高灵敏度、高放大增益的雪崩光电探测器件(APD)的带宽最大只有MHz量级,无法完全探测到混沌等复杂光信号高频率(GHz量级)的随机振幅波动,这限制了本文模拟仿真所能实现的cm级空间分辨率。同时,受光纤热传导效应等因素的限制,实验中无法精确控制cm级小温变区的温度变化。后续本课题组会设计相应的实验方案来解决上述问题,进一步完善并优化基于复杂信号多阶时域差分重构相关法的拉曼分布式光纤传感方案。

4 结论

提出了一种基于多阶时域差分重构相关法的拉曼分布式光纤传感技术,以提高传统拉曼分布式光纤传感系统的空间分辨率与信噪比性能。基于相关压缩解调方法,揭示了拉曼散射温度调制光场的空间位置。更为关键的是,所提出的方法利用相关定位原理取代了传统光时域反射定位原理,克服了传统方案光源脉宽对传感空间分辨率的物理限制,在理论上将传统m量级传感空间分辨率提升至cm量级。此外,本文从理论上将差分重构方案推广至任意阶数,分析了差分阶数对传感系统信噪比的影响。数值仿真结果表明,该方法在不影响传感空间分辨率的前提下可提取更多包含探测光纤区域的温度信息,并且可以通过散射信号相关峰产生的倍增放大效应来提高传感信号信噪比,并减少解调过程中非探测光纤区域温度信号的串扰,进而有效达到提升拉曼分布式光纤传感系统信噪比的目的。

最后比较了混沌信号、ASE信号、噪声信号传感方案的传感动态范围、空间分辨率和系统信噪比,所得结果为长传感距离、高空间分辨率和高信噪比拉曼分布式光纤传感技术提供了新的研究思路。

参考文献

[1] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502.

[2] Wang Y H, Zheng S S, Yang W M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water[J]. Nature, 2021, 600(7887): 81-85.

[3] Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 2016, 7: 10870.

[4] Völkel A, Nimmesgern L, Mielnik-Pyszczorski A, et al. Intracavity Raman scattering couples soliton molecules with terahertz phonons[J]. Nature Communications, 2022, 13: 2066.

[5] 刘楠楠, 窦振铭, 贾若一, 等. 长光纤中拉曼光子时间模式的影响因素研究[J]. 光学学报, 2022, 42(9): 0919001.

    Liu N N, Dou Z M, Jia R Y, et al. Influencing factors of temporal modes of Raman photons in long optical fibers[J]. Acta Optica Sinica, 2022, 42(9): 0919001.

[6] 吴涛, 庞涛, 汤玉泉, 等. 应用于 RDTS系统的 MOPA 全光纤脉冲激光器[J]. 中国激光, 2019, 46(11): 1101009.

    Wu T, Pang T, Tang Y Q, et al. Application of MOPA all-fiber pulsed laser in RDTS system[J]. Chinese Journal of Laser, 2019, 46(11): 1101009.

[7] 苑立波, 童维军, 江山, 等. 我国光纤传感技术发展路线图[J]. 光学学报, 2022, 42(1): 0100001.

    Yuan L B, Tong W J, Jiang S, et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 2022, 42(1): 0100001.

[8] 孙苗, 汤玉泉, 杨爽, 等. 提高分布式温度传感器测温准确度的降噪方法[J]. 激光与光电子学进展, 2022, 59(19): 1906003.

    Sun M, Tang Y Q, Yang S, et al. Noise reduction method for improving temperature measurement accuracy of distributed temperature sensor[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1906003.

[9] 申文博, 张东生. 弯曲损耗对分布式光纤拉曼测温解调的影响[J]. 激光与光电子学进展, 2023, 60(5): 0506004.

    Shen W B, Zhang D S. Influence of bending loss to demodulation on distributed fiber Raman temperature measurement[J]. Laser & Optoelectronics Progress, 2023, 60(5): 0506004.

[10] Zhou Z M, Zhang J, Huang X S, et al. Trend of soil temperature during pipeline leakage of high-pressure natural gas: experimental and numerical study[J]. Measurement, 2020, 153: 107440.

[11] Yamate T, Fujisawa G, Ikegami T. Optical sensors for the exploration of oil and gas[J]. Journal of Lightwave Technology, 2017, 35(16): 3538-3545.

[12] Apperl B, Pressl A, Schulz K. Feasibility of locating leakages in sewage pressure pipes using the distributed temperature sensing technology[J]. Water, Air, & Soil Pollution, 2017, 228(2): 82-94.

[13] Amitabha D, Haritha M, Deepa V, et al. Reference-free real-time power line monitoring using distributed anti-stokes Raman thermometry for smart power grids[J]. IEEE Sensors Journal, 2020, 20(13): 7044-7052.

[14] Li J, Zhang M J. Physics and applications of Raman distributed optical fiber sensing[J]. Light: Science & Applications, 2022, 11: 128.

[15] Li J, Yu T, Zhang M J, et al. Temperature and crack measurement using distributed optic-fiber sensor based on Raman loop configuration and fiber loss[J]. IEEE Photonics Journal, 2019, 11(4): 6802113.

[16] Hausner M B, Suárez F, Glander K E, et al. Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data[J]. Sensors, 2011, 11(11): 10859-10879.

[17] Wang Z L, Chang J, Zhang S S, et al. Spatial resolution improvement of distributed Raman temperature measurement system[J]. IEEE Sensors Journal, 2013, 13(11): 4271-4278.

[18] Wang J Q, Li Z Y, Fu X L, et al. High-sensing-resolution distributed hot spot detection system implemented by a relaxed pulse width[J]. Optics Express, 2020, 28(11): 16045-16056.

[19] 张明江, 李健, 刘毅, 等. 面向分布式光纤拉曼测温的新型温度解调方法[J]. 中国激光, 2017, 44(3): 0306002.

    Zhang M J, Li J, Liu Y, et al. Temperature demodulation method for distributed fiber Raman temperature measurement[J]. Chinese Journal of Lasers, 2017, 44(3): 0306002.

[20] Matías L, Francisco S, Hausner Mark B, et al. Extension of duplexed single-ended distributed temperature sensing calibration algorithms and their application in geothermal systems[J]. Sensors, 2022, 22(9): 3319.

[21] Li J, Zhou X X, Xu Y, et al. Slope-assisted Raman distributed optical fiber sensing[J]. Photonics Research, 2021, 10(1): 205-213.

[22] Xia J C, Xia L, Yang Z, et al. Attenuation calibration method based on sensitivity correction in a Raman distributed temperature system[J]. Applied Optics, 2020, 59(2): 300-305.

[23] Li J, Li Y T, Zhang M J, et al. Performance improvement of Raman distributed temperature system by using noise suppression[J]. Photonic Sensors, 2018, 8(2): 103-113.

[24] Li J, Zhou X X, Zhang M J, et al. Temperature resolution improvement in Raman-based fiber-optic distributed sensor using dynamic difference attenuation recognition[J]. Sensors, 2020, 20(23): 6922.

[25] Muanenda Y S, Taki M, Nannipieri T, et al. Advanced coding techniques for long-range Raman/BOTDA distributed strain and temperature measurements[J]. Journal of Lightwave Technology, 2016, 34(2): 342-350.

[26] Liu Z Y X, Wu H, Du H Z, et al. Distributed temperature and curvature sensing based on Raman scattering in few-mode fiber[J]. IEEE Sensors Journal, 2022, 22(23): 22620-22626.

[27] Gasser J, Warpelin D, Bussières F, et al. Distributed temperature sensor combining centimeter resolution with hundreds of meters sensing range[J]. Optics Express, 2022, 30(5): 6768-6777.

[28] Li J, Zhang Q, Xu Y, et al. High-accuracy distributed temperature measurement using difference sensitive-temperature compensation for Raman-based optical fiber sensing[J]. Optics Express, 2019, 27(25): 36183-36196.

[29] Wang Z N, Fan M Q, Zhang L, et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 2015, 23(12): 15514-15520.

[30] Coscetta A, Catalano E, Cerri E, et al. Hybrid Brillouin/Rayleigh sensor for multiparameter measurements in optical fibers[J]. Optics Express, 2021, 29(15): 24025-24031.

[31] Ososkov Y Z, Chernutsky A O, Dvoretskiy D A, et al. Fiber optic Raman distributed temperature sensor based on an ultrashort pulse mode-locked fiber laser[J]. Optics and Spectroscopy, 2019, 127(4): 664-668.

[32] Sun X Z, Yang Z S, Hong X B, et al. Genetic-optimised aperiodic code for distributed optical fibre sensors[J]. Nature Communications, 2020, 11: 5774.

[33] Soto M A, Nannipieri T, Signorini A, et al. Raman-based distributed temperature sensor with 1 m spatial resolution over 26 km SMF using low-repetition-rate cyclic pulse coding[J]. Optics Letters, 2011, 36(13): 2557-2559.

[34] Rosolem J B, Bassan F R, de Freitas D E, et al. Raman DTS based on OTDR improved by using gain-controlled EDFA and pre-shaped simplex code[J]. IEEE Sensors Journal, 2017, 17(11): 3346-3353.

[35] Liu Y P, Ma L, Yang C, et al. Long-range Raman distributed temperature sensor with high spatial and temperature resolution using graded-index few-mode fiber[J]. Optics Express, 2018, 26(16): 20562-20571.

[36] Wang M, Wu H, Tang M, et al. Few-mode fiber based Raman distributed temperature sensing[J]. Optics Express, 2017, 25(5): 4907-4916.

[37] Wu H, Du H Z, Zhao C, et al. 24 km high-performance Raman distributed temperature sensing using low water peak fiber and optimized denoising neural network[J]. Sensors, 2022, 22(6): 2139.

[38] Zhou X X, Li J, Xu Y, et al. Chaos Raman optical time-domain reflectometry for millimeter-level spatial resolution temperature sensing[J]. Journal of Lightwave Technology, 2021, 39(23): 7529-7538.

[39] Li J, Wang C Y, Cao K Y, et al. Breakthrough the physical barrier on spatial resolution in Raman distributed fiber sensing using chaotic correlation demodulation[J]. APL Photonics, 2023, 8(7): 076105.

李健, 范卜文, 程姿嘉, 薛晓辉, 张明江. 多阶时域差分重构相关法拉曼分布式光纤传感[J]. 光学学报, 2024, 44(1): 0106025. Jian Li, Bowen Fan, Zijia Cheng, Xiaohui Xue, Mingjiang Zhang. Raman Distributed Optical Fiber Sensing Based on Multi-Order Time-Domain Differential Reconstruction Correlation[J]. Acta Optica Sinica, 2024, 44(1): 0106025.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!