光谱学与光谱分析, 2023, 43 (3): 767, 网络出版: 2023-04-07  

激光吸收光谱气体检测中的干扰因素分析和温度校正方法研究

Analysis of Interference Factors and Study of Temperature Correction Method in Gas Detection by Laser Absorption Spectroscopy
作者单位
1 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 光子器件与材料安徽省重点实验室, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
4 中国科学院合肥物质科学研究院, 安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
5 国防科技大学先进激光技术安徽省实验室, 安徽 合肥 230037
摘要
可调谐二极管激光吸收光谱(TDLAS)是一种非侵入式光谱检测技术, 具有高选择性、 高响应性和高分辨率等特点。 根据分子光谱吸收原理, 被检测气体所处环境温度的改变会引起分子吸收谱线强度的变化, 进而影响气体浓度反演的准确性。 为提高气体在高温背景下浓度测量的准确性和真实性, 选取工业过程常见的一氧化碳(CO)为目标气体, 设计了基于波长调制技术多温度梯度(室温14~1 100 ℃)的气体吸收光谱检测实验, 与HITRAN数据库中光谱参数进行对比, 并对结果进行校正和分析。 同时, 以探测信号有效扫描区域的线性度、 标准差和残差平方和等参数为依据, 分析了不同材质的窗片对高温实验的影响, 通过升降温实验数据的分析, 选择了降温梯度测量作为高温实验的最佳控温顺序。 经过对标准浓度的CO进行高温实验, 发现随着温度的升高, 二次谐波(2f)幅值和吸收线强有相一致的下降趋势, 符合理论公式的变化规律。 经过分析校正后的2f幅值和温度呈现非相关性, 实现了热背景下光谱检测的校正, 验证了变温时2f幅值校正的准确性。 该研究为光谱检测技术在高温背景下实际应用提供了一定的参考, 尤其是对高精度工业炉内气体燃烧效率的动态评估具有极其重要的意义。
Abstract
Tunable diode laser absorption spectroscopy (TDLAS) is a non-invasive spectral detection technology with high selectivity, high response and high resolution. According to the principle of molecular spectral absorption, the change in target gas temperature will affect the change of molecular absorption line strength and then affect the accuracy of gas concentration inversion. In order to improve the accuracy and authenticity of gas concentration measurements in high-temperature atmospheres, carbon monoxide (CO), a common gas in industrial processes, was selected as the target gas. Experiments were designed to detect the gas spectra in multiple temperature regions (from 14 to 1 100 ℃) based on wavelength modulation technique, compared with spectral parameters in the HITRAN database, and the results were calibrated and analyzed. At the same time, the influence of different materials of sapphire window pieces was analyzed in terms of parameters such as the linearity of the detection signal. A cooling gradient measurement was selected as the temperature control sequence for the high-temperature experiment by analysing the data from the temperature rise and fall experiments. Through the high-temperature experiment with a standard concentration of CO, it was found that the second harmonic (2f) amplitude and absorption line intensity had a consistent decreasing trend with increasing temperature, by the theoretical equation of variation law. After analysis, the corrected 2f amplitude and temperature show a non-correlation and a correction for the effect of temperature on spectral detection is achieved. The shortcomings of the correction formula and the proposed improvement method are remedied, and the accuracy of the 2f amplitude correction at variable temperatures is verified. This study provides a reference for the practical application of spectral detection technology in the measurement process of high-temperature environments, especially for the dynamic evaluation of combustion efficiency in high-precision industrial furnaces, which is of great importance.
参考文献

[1] LIU Wen-qing, WANG Xing-ping, MA Guo-sheng, et al(刘文清, 王兴平, 马国盛, 等). Acta Optica Sinica(光学学报), 2021, 41(1): 434.

[2] Fu Bo, Zhang Chenghong, Lü Wenhao, et al. Applied Spectroscopy Reviews, 2022, 57(2): 112.

[3] KAN Rui-feng, XIA Hui-hui, XU Zhen-yu, et al(阚瑞峰, 夏晖晖, 许振宇, 等). Chinese Journal of Lasers(中国激光), 2018, 45(9): 67.

[4] Sepman A, gren Y, Gullberg M, et al. Applied Physics B: Lasers and Optics, 2016, 122(29): 12.

[5] Sur R, Sun K, Jeffries J B, et al. Applied Physics B: Lasers and Optics, 2014, 116(1): 33.

[6] ZHANG Bu-qiang, XU Zhen-yu, LIU Jian-guo, et al(张步强, 许振宇, 刘建国, 等). Chinese Journal of Lasers(中国激光), 2019, 46(7): 300.

[7] Xia Jinbao, Zhu Feng, Zhang Sasa, et al. Optics and Lasers in Engineering, 2019, 117: 21.

[8] Liu Ningwu, Xu Linguang, Zhou Sheng, et al. ACS Sensors, 2020, 5(11): 3607.

[9] Bolshov M A, Kuritsyn Y A, Romanovskii Y V. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 106: 45.

[10] Chao Xing, Jeffries J B, Hanson R K. Proceedings of the Combustion Institute, 2013, 34(2): 3583.

[11] HUANG An, XU Zhen-yu, XIA Hui-hui, et al(黄 安, 许振宇, 夏晖晖, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(4): 1144.

[12] Sepman Alexey, gren Yngve, Qu Zhechao, et al. Proceedings of the Combustion Institute, 2017, 36(3): 4541.

[13] Raza Mohsin, Ma Liuhao, Yao Shunchun, et al. Fuel, 2021, 305: 121591.

[14] Nevrl Vclav, Dostl Michal, Kleka Vít, et al. Fuel, 2020, 263: 116652.

[15] Peng Zhimin, Du Yanjun, Ding Yanjun. Sensors (Basel), 2020, 20(3): 681.

[16] ZHANG Zhi-rong, WU Bian, XIA Hua, et al(张志荣, 吴 边, 夏 滑, 等). Acta Physica Sinica(物理学报), 2013, 62(23): 183.

[17] Raza Mohsin, Ma Liuhao, Yao Chenyu, et al. Optics & Laser Technology, 2020, 130: 106344.

[18] Liu Ningwu, Xu Linguang, Zhou Sheng, et al. Analyst, 2021, 146: 3841.

[19] He Dong, Peng Zhimin, Ding Yanjun. Fuel, 2021, 284: 118980.

[20] Gordon I E, Rothman L S, Hill C, et al. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3.

张乐文, 王前进, 孙鹏帅, 庞涛, 吴边, 夏滑, 张志荣. 激光吸收光谱气体检测中的干扰因素分析和温度校正方法研究[J]. 光谱学与光谱分析, 2023, 43(3): 767. ZHANG Le-wen, WANG Qian-jin, SUN Peng-shuai, PANG Tao, WU Bian, XIA Hua, ZHANG Zhi-rong. Analysis of Interference Factors and Study of Temperature Correction Method in Gas Detection by Laser Absorption Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 767.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!