大气与环境光学学报, 2022, 17 (6): 679, 网络出版: 2023-03-16  

基于卫星遥感的中国地区XCO2和XCH4时空分布研究

Spatial and temporal distribution of XCO 2 and XCH 4 in China based on satellite remote sensing
作者单位
1 中国地质大学 (武汉) 地理与信息工程学院, 湖北 武汉 430074
2 中国科学院空天信息创新研究院遥感科学国家重点实验室, 北京 100101
摘要
人为活动排放的以 CO 2 和 CH 4 为主的大量温室气体是造成全球增温的主要因素。由于地面观测站点稀少, 卫星遥感为监测 CO 2 和 CH 4 的时空分布及变化趋势提供了新的技术手段。本文验证了 GOSAT、OCO-2 卫星的大气 CO 2 和 CH 4 柱浓度遥感产品 XCO 2 和 XCH 4 的精度, 并分析了我国 XCO 2 和 XCH 4 的时空分布和变化趋势, 主要结论如下: (1) 在所用 XCO 2 遥感产品中, OCO-2_ACOS 与地面观测的相关性最高 (达 0.93); 而 XCH 4 产品中 GOSAT_OCPR 的相关性最高 (达 0.78)。(2) 在研究的时间跨度内, XCO 2 浓度呈逐年上升趋势, 如我国 OCO-2 XCO 2 年均浓度由 2014 年的 396.92 × 10 -6 增长到 2021 年的 414.72 × 10 -6 ; CO 2 浓度高值主要分布在城市和工业集中的中国东部地区, 西北地区塔克拉玛干沙漠的高值与气溶胶散射影响有关; 同时, 受人为源和自然源的季节变化影响, XCO 2 具有冬春高、夏秋低的时间特征。(3) XCH 4 浓度同样呈逐年上升趋势, 但与 XCO 2 不同, XCH 4 浓度高值主要分布在天然气和煤炭开采集中的四川东部、重庆西部、陕西与山西的中部地区, 以及工业集中的华北地区,季浓度呈现夏秋高、春冬低的特征。(4) 2020 年 XCO 2 高值区发生偏移; 相对于 2020 年, 2021 年 CO 2 增速有所回升, 但增幅相对于 2019 年之前仍有所减小。
Abstract
The large amount of greenhouse gases, mainly CO 2 and CH 4 , emitted by human activities is a major contributor to global warming. Due to the scarcity of ground-based observation sites, satellite remote sensing provides a new technical means to monitor the spatial and temporal distribution and trends of CO 2 and CH 4 . In this paper, we verify the accuracy of XCO 2 and XCH 4 , the remote sensing products of atmospheric CO 2 and CH 4 column concentrations from GOSAT and OCO-2 satellites, and analyze the spatial and temporal distributions and trends of XCO 2 and XCH 4 in China. The main conclusions are as follows. (1) Among XCO 2 remote sensing products, OCO-2_ACOS has the highest correlation with ground observation (up to 0.93); while GOSAT_OCPR has the highest correlation with XCH 4 products (up to 0.78). (2) In the years of study, XCO 2 concentration increases year by year, for example, the annual average OCO-2 XCO 2 concentration in China increases from 396.92 × 10 -6 in 2014 to 414.72 × 10 -6 in 2021. The high values of CO 2 concentration are mainly distributed in urban and industrial concentrated East China, and the high values in the Taklamakan Desert in Northwest China are related to the influence of aerosol scattering. And in the other hand, influenced by the seasonality of anthropogenic and natural sources, XCO 2 has the temporal characteristics of high in winter and spring and low in summer and autumn. (3) The concentration of XCH 4 also increases year by year. Unlike XCO 2 , the high concentration of XCH 4 is distributed in central areas of China such as eastern Sichuan, western Chongqing, centralShaanxi and Shanxi where natural gas and coal mining are concentrated, and the northern China where industry is concentrated. And the seasonal concentration of XCH 4 is high in summer and autumn and low in spring and winter. (4) In 2020, the XCO 2 high value area shifts. Compared with 2020, the CO 2 growth rate of 2021 increases a little, but the increase is still reduced compared with that before 2019.
参考文献

[1] IPCC. Climate change 2021: The physical science basis [R]. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 2021.

[2] Etheridge D M, Steele L P, Langenfelds R L, et al . Natural and anthropogenic changes in atmospheric CO 2 over the last 1000 years from air in Antarctic ice and firn [J]. Journal of Geophysical Research , 1996, 101: 4115-4128.

[3] Etminan M, Myhre G, Highwood E J, et al . Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing [J]. Geophysical Research Letters , 2016, 43(24): 12614-12623.

[4] Prather M J, Holmes C D, Hsu J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry [J]. Geophysical Research Letters , 2012, 39(9): L09803.

[5] Liu D. A Study on the Influencing Factors of Individual’s Willingness to Pay for Carbon Neutrality [D]. Wuhan: Wuhan University, 2019.

[6] O ′ dell C W, Eldering A, Wennberg P O, et al . Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm [J]. Atmospheric Measurement Techniques , 2018, 11(12): 6539-6576.

[7] Chevallier F, Palmer P I, Feng L, et al . Toward robust and consistent regional CO 2 flux estimates from in situ and spaceborne measurements of atmospheric CO 2 [J]. Geophysical Research Letters , 2014, 41(3): 1065-1070.

[8] Wunch D, Toon G C, Blavier J F L, et al . The total carbon column observing network [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 2011, 369(1943): 2087-2112.

[9] Mo L, Wu Z C, Zhang Y. Spatial and temporal variations of XCO 2 in China and its influencing factors analysis [J]. China Environmental Science , 2021, 41(6): 2562-2570.

[10] Xia L J, Liu L X, Li B Z, et al . Spatial and temporal distribution characteristics of atmospheric CO 2 in central China [J]. China Environmental Science , 2018, 38(8): 2811-2819.

[11] Wu C J, Lei, L P, ZengZ C. Spatio-temporal analysis of differences among atmospheric CO 2 concentrations retrieved from different satellite observations [J]. Journal of the University of Chinese Academy of Sciences , 2019, 36(3): 331-337.

[12] Liu D D, Huang Y B, Cao Z S, et al . Analysis of total columns of greenhouse gas based on direct observation and comparison with satellite data in Hefei [J]. Acta Photonica Sinica , 2020, 49(3): 165-174.

[13] Bie N. Spatio-temporal Patterns and Uncertainty Analysis of Satellite Retrieved Atmospheric CO 2 Columns in China [D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2018.

[14] Taylor T E, O ′ dell C W, Crisp D, et al . An 11-year record of XCO 2 estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm [J]. Earth System Science Data , 2022, 14(1): 325-360.

[15] Butz A, Guerlet S, Hasekamp O, et al . Toward accurate CO 2 and CH 4 observations from GOSAT [J]. Geophysical Research Letters , 2011, 38(14) : L14812.

[16] ODell C, Eldering A, Gunson M, et al . Improvements in XCO 2 accuracy from OCO-2 with the latest ACOS v10 product [C]. EGU General Assembly Conference Abstracts , April 30, 2021, Online. 2021: EGU21-10484.

[17] OCO-2/OCO-3 Science Team, Abhishek Chatterjee, Vivienne Payne. OCO-3 level 2 bias-corrected XCO 2 and other select fields from the full-physics retrieval aggregated as daily files, retrospective processing v10.4r [DS]. Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), 2022.

[18] Parker R, Boesch H, Cogan A, et al . Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations [J]. Geophysical Research Letters , 2011, 38(15) : L15807.

[19] Butz A, Hasekamp O P, Frankenberg C, et al . CH 4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes [J]. Journal of Geophysical Research: Atmospheres , 2010,115: D24302.

[20] Wu H. Influence of Cloud and Aerosol in Atmospheric CO 2 Inversion and Its Correction Method [D]. Hefei: University of Science and Technology of China, 2019.

[21] Chen L F, Zhang Y, Zou M M, et al . Overview of atmospheric CO 2 remote sensing from space [J]. Journal of Remote Sensing , 2015, 19(1): 1-11.

[22] Wang Z. Analysis of Atmospheric CO 2 Characteristics and Source and Sink in China [D]. Xi ′ an: Chang ′ an University, 2019.

[23] Tao M, Chen L, Wang J, et al . Characterization of dust activation and their prevailing transport over East Asia based on multi-satellite observations [J]. Atmospheric research , 2022, 265: 105886.

[24] Yang D X, Liu Y, Cai Z N, et al . The spatial and temporal distribution of carbon dioxide over China based on GOSAT observations [J]. Chinese Journal of Atmospheric Sciences , 2016, 40(3): 541-550.

[25] Zhang S H, Xie B, Zhang H, et al . The spatial-temporal distribution of CH 4 over globe and East Asia [J]. China Environmental Science , 2018, 38(12): 4401-4408.

加亦瑱, 陶明辉, 丁思佳, 刘航语, 曾铭裕, 陈良富. 基于卫星遥感的中国地区XCO2和XCH4时空分布研究[J]. 大气与环境光学学报, 2022, 17(6): 679. JIA Yizhen, TAO Minghui, DING Sijia, LIU Hangyu, ZENG Mingyu, CHEN Liangfu. Spatial and temporal distribution of XCO 2 and XCH 4 in China based on satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 679.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!