大气与环境光学学报, 2022, 17 (2): 249, 网络出版: 2022-07-22  

成像差分吸收光谱技术的软件研发与数据反演

Software development and data inversion for imaging differential absorption spectroscopy technology
作者单位
1 合肥学院生物食品与环境学院, 安徽 合肥 230601
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学技术大学, 安徽 合肥 230026
摘要
成像差分吸收光谱技术 (IDOAS) 能够显示污染物的空间分布, 目前已成功运用于地基扫描、机载与星载等多个平台, 为环境监测及治理提供了有力支撑, 其中地基 IDOAS 主要运用于对某一污染源的探测。分析了成像系统基于“推扫”方式的工作原理, 并将此技术应用于城市大气边界层污染物分布的探测。为更高效使用差分吸收光谱技术 (DOAS) 反演各种痕量气体成分, 更精确地分析污染气体的时空分布特征, 对 QDoas 软件进行了源码级分析和优化。在 Windows 平台上, 使用 C++ 和 QT 对 QDoas 代码进行重组, 通过重新提取、整合、改写与优化代码, 实现了更快速便捷的反演功能模块。为检验模块的反演效果, 以大气中常见的污染物 NO2 和 SO2 为例, 于 2019 年 11 月 6 日在铜陵富鑫钢铁厂开展了现场观测实验。使用新编软件对观测数据进行数据反演后成功获得污染气体的二维分布信息图, 证实了该软件在实际大气环境监测中的适用性。
Abstract
Imaging differential absorption spectroscopy technology (IDOAS) can obtain the spatial distribution of pollutants. It has been successfully applied to multiple platforms such as ground-based scanning, airborne and spaceborne, providing strong support for environmental monitoring and management. Among them, the ground-based IDOAS is mainly used in the detection of a certain pollution source. The principle of the imaging system based on the “push-broom” mode is analyzed, and the detection technology is applied to the detection of pollutant distribution in urban atmospheric boundary layer. In order to use the DOAS method to invert various trace gas components more efficiently and analyze the temporal and spatial distribution characteristics of polluted gases more accurately, the source-level analysis and optimization of QDoas software have been carried out. On the Windows platform, C++ and QT are used to reorganize the QDoas code. By re-extracting, integrating, rewriting, and optimizing the code, a faster and more convenient inversion function module is realized. In order to test the inversion performance of the module, taking the common pollutants NO2 and SO2 in the atmosphere as examples, an on-site observation experiment was carried out in Tongling Fuxin Iron and Steel Plant, China, on November 6, 2019. The two-dimensional distribution image of the polluted gas concentration in the target area is successfully obtained after the data inversion with the new compiled software, which confirms the applicability of the developed software in the actual atmospheric environment monitoring.
参考文献

[1] Liu Y, Liu W Q, Kan R F, et al. Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2659-2663.

[2] Si F Q, Xie P H, Hereue K P, et al. Hyperspectral imaging differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2008, 57(9): 6018-6023.

[3] Si F Q, Xie P H, Liu Y, et al. Determination of plume by hyperspectral imaging differential optical absorption spectroscopy[J]. Acta Optica Sinica, 2009, 29(9): 2458-2462.

[4] Heue K P, Richter A, Bruns M, et al. Validation of SCIAMACHY tropospheric NO2-columns with AMAXDOAS measurements[J]. Atmospheric Chemistry and Physics, 2005, 5(4): 1039-1051.

[5] General S, Bobrowski N, Phler D, et al. Airborne I-DOAS measurements at Mt. Etna: BrO and OClO evolution in the plume[J]. Journal of Volcanology and Geothermal Research, 2015, 300: 175-186.

[6] Pikelnaya O, Flynn J H, Tsai C, et al. Imaging DOAS detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8716-8728.

[7] Lee H, Irie H, Ryu J, et al. Lower tropospheric aerosol measurements by MAX-DOAS during severe Asian dust period[J]. Aerosol Science and Technology, 2009, 43(12): 1208-1217.

[8] Liu J, Si F Q, Zhou H J, et al. Observation of two-dimensional distributions of NO2 with airborne imaging DOAS technology[J]. Acta Physica Sinica, 2015, 64(3): 384-391.

[9] Cheng Y L, Wang S S, Zhu J, et al. Surveillance of SO2 and NO2 from ship emissions by MAX-DOAS measurements and the implications regarding fuel sulfur content compliance[J]. Atmospheric Chemistry and Physics, 2019, 19(21): 13611-13626.

[10] Platt U, Lübcke P, Kuhn J, et al. Quantitative imaging of volcanic plumes—Results, needs, and future trends[J]. Journal of Volcanology and Geothermal Research, 2015, 300: 7-21.

[11] Lohberger F, Hnninger G, Platt U. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases[J]. Applied Optics, 2004, 43(24): 4711-4717.

[12] Lee H, Kim Y J, Lee C. Estimation of the rate of increase in nitrogen dioxide concentrations from power plant stacks using an imaging-DOAS[J]. Environmental Monitoring and Assessment, 2009, 152(1-4): 61-70.

[13] Liu J, Si F Q, Zhou H J, et al. Estimation of sulfur dioxide emission from power plant using imaging differential optical absorption spectroscopy technique[J]. Acta Optica Sinica, 2015, 35(6): 0630003.

曹子昊, 曾议, 鲁晓峰, 廖捷, 杨东上, 常振, 司福祺, 奚亮. 成像差分吸收光谱技术的软件研发与数据反演[J]. 大气与环境光学学报, 2022, 17(2): 249. CAO Zihao, ZENG Yi, LU Xiaofeng, LIAO Jie, YANG Dongshang, CHANG Zhen, SI Fuqi, XI Liang. Software development and data inversion for imaging differential absorption spectroscopy technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 249.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!