中国激光, 2023, 50 (23): 2300001, 网络出版: 2023-12-07  

柔性光热电探测器研究进展

Research Progress of Flexible Photothermoelectric Detectors
作者单位
1 清华大学工程物理系,北京 100084
2 危爆物品探测技术国家工程研究中心,北京 100084
摘要
柔性光电探测器具有体积小、重量轻、可弯曲等特点,可以直接安装在不规则物体的表面,实现对空间信息的连续测量,目前已被广泛应用于小型化能源设备、可穿戴电子产品、虚拟现实交互装备、植入式医疗器械的开发和制备,在新能源、微电子、人工智能、医疗保健等领域展现出了巨大的应用前景。基于光热电效应的新型光电探测器具有大带宽、零偏压、高速、室温工作等优势,并且随着新型热电材料和纳米光子学的发展,其在响应度和响应速度方面均取得了令人瞩目的进展。若选取适当的光敏材料和衬底材料,光热电效应亦可应用于柔性光电探测器,尤其是可在传统光子学探测技术难以企及的长波红外至太赫兹波段实现应用。本文综述了近年来可见光至太赫兹波段柔性光热电探测器的研究进展,介绍了具有柔性特性的碳材料、无机和有机化合物在光热电探测领域的探索、应用与优化机理,并简要讨论了该类探测器的发展前景和面临的挑战。
Abstract
Significance

Flexible photothermoelectric (PTE) detectors have considerable research significance owing to their unique characteristics, including flexibility and PTE properties.

Flexible PTE detectors have the characteristics of lightness, flexibility, and softness, allowing them to be attached directly to irregular surfaces for continuous measurement of spatial information. They have considerable potential in the development and fabrication of miniaturized energy equipment, virtual-reality interactive systems, and implantable medical devices, which have application prospects in new energy, microelectronics, artificial intelligence, medical care, and other fields. They are also attractive for use in wearable devices, as they offer several advantages over traditional rigid sensors. These detectors can be easily bent or shaped to fit the contours of the human body, which allows comfortable and unobtrusive monitoring of physiological parameters.

Furthermore, the PTE properties of these detectors allow them to have ultra-broadband responses. In contrast to other types of detectors, which are typically limited to a specific wavelength range, PTE detectors can detect light across a wide range of wavelengths, from ultraviolet to terahertz. This makes them highly versatile and useful for various applications, including spectroscopy, imaging, and sensing. Another advantage of PTE detectors is their high speed. The PTE response breaks the limit of the low response speed of traditional thermal detectors by introducing hot carrier-assisted heat conduction. This fast response makes PTE detectors well-suited for applications that require rapid detection, such as high-speed imaging and sensing. Additionally, they can operate under zero-bias and room-temperature conditions, which makes them convenient and cost-effective to use. In contrast, other types of broadband detectors, such as bolometers, typically require a bias voltage to operate and may require cooling to achieve optimal performance.

Overall, the research into flexible PTE detectors has significant implications for the development and applications of novel electronic devices. In the past 20 years, the field has continued to advance, and there has been a large amount of research on new types of flexible PTE detectors. However, they face a series of challenges related to detection performance and manufacturing process improvement. Therefore, it is necessary to provide an overview of flexible PTE detectors to lay the foundation for the development of flexible optoelectronic technology.

Progress

In this review, we first describe the key parameters of flexible PTE detectors, including the responsivity, response time, cutoff frequency, noise equivalent power, and specific detectivity. Then, we summarize the research progress of flexible PTE detectors with detection wavelengths ranging from visible to terahertz and introduce the exploration, application, and optimization mechanism of carbon materials and inorganic and organic compounds with flexible properties in the field of PTE detection. Suzuki’s research group made significant contributions to the application of CNTs in flexible PTE detectors (Fig.4). They developed a variety of flexible CNT-based PTE detectors for different use scenarios (Fig.5) and applied them to detect terahertz light (Fig.7). In addition to CNTs, many other new materials, such as reduced graphene oxide (Fig.10), topological insulators (Fig.11), transition-metal halide (Fig.12), quasi-one-dimensional materials (Fig.13), MXenes (Fig.14), and PEDOT (Fig.15) have been studied and applied to flexible PTE detectors and have exhibited good performance. Combinations of conducting polymers and carbon materials for flexible PTE detectors have been widely studied in recent years. Studies on graphene/PANI, graphene/PEI (Fig.20), and PBI/MWCNTs (Fig.21) indicated that it is easier to prepare high-performance flexible PTE detectors by combining these materials than by using them alone. Finally, the problems faced and the ongoing research trends in this field are discussed, including methods for improving the detector performance, the evaluation criteria for flexibility, and the manufacturing and human compatibility problems in practical applications.

Conclusions and Prospects

Flexible PTE detectors can revolutionize the field of photodetectors. We expect that they will become increasingly important—particularly in the development of wearable devices and other flexible electronics. We expect to see further advancements in these detectors, including improvements in sensitivity, response time, and reliability. To achieve these goals and promote the practical application of flexible PTE detectors, it is necessary to explore new materials, design the detector structure, and formulate unified evaluation standards.

1 引言

光电探测器是能够将光转换为电信号进行探测的器件1-2,在环境监测、生物传感、通信、雷达等工业或**领域得到了广泛应用。对于长波红外至太赫兹波段的低能量光子探测来说,常用的光子型光敏材料是窄带隙半导体和量子阱材料3-4,基于这些材料的探测器在室温下的暗电流通常很大,因此低温冷却单元是必不可少的,这无疑增加了探测器的尺寸、重量和复杂度5-6。因此,开发高性能非制冷光电探测器至关重要。

与传统的光子型光电探测器相比,基于热效应的光电探测器能够在室温下探测从红外到太赫兹波段的超宽带辐射,其工作原理是测量与温度相关的物理量,例如辐射热计测量电阻变化,热释电探测器测量由自发极化材料温度变化引起的极化电荷变化,光热电(PTE)探测器测量温差产生的电动势。其中:辐射热计在使用时需要加入外部偏压,这会引入额外的噪声;热释电探测器灵敏度较低、响应速度较慢,同时需要使用斩波器才能测量连续波辐射。这些问题限制了辐射热计与热释电探测器的进一步发展。光热电探测器工作时不需要施加偏压,从而可以忽略外加偏压带来的噪声,并且其响应速度快、室温灵敏度高,是未来发展宽带高性能探测器的重要方向。

传统光热电探测器的光敏和衬底材料主要通过高温外延生长方法在晶片上生长无机半导体材料来制备,采用这些材料制备的光热电探测器具有材料本身固有的刚性,并且制备工艺复杂、成本高昂。与刚性基板上的光热电探测器相反,柔性光热电探测器能够弯曲、折叠以及拉伸,可应用在可穿戴设备、电子皮肤、智能纺织品等领域7,因此将各种柔性热电材料制作成柔性光热电探测器,探究其物理机制并改进其探测性能逐渐成为了研究热点。

本文综述了近年来柔性光热电探测器的研究进展和应用前景。首先介绍了光热电探测器的原理和一些典型指标,之后介绍了基于不同柔性材料的光热电探测器,这些柔性材料包括碳纳米材料、无机化合物柔性材料、有机柔性材料以及无机-有机复合材料,其响应波段包括可见光到太赫兹波的多个波段。最后,简要总结和展望了柔性光热电探测器的发展趋势以及未来面临的挑战。

2 光热电探测器的原理和性能指标

2.1 光热电探测器的原理

光热电探测器的响应机制是光-热-电转换效应。如图1所示,光敏材料的一端在吸收光子能量后会形成温度梯度(ΔT),载流子在温度梯度的驱动下从热端扩散到冷端,从而建立电势差(ΔU)。这个由温度梯度到电势差的转换过程也被称作塞贝克(Seebeck)效应。ΔU与ΔT的比值定义为Seebeck系数(S)。S与材料电导率(σ)的关系可以用Mott方程8表示成

图 1. 光热电效应示意图

Fig. 1. Schematic diagram of the photothermoelectric (PTE) effect

下载图片 查看所有图片

S=-π2k2T3edlnσdEE=EF

式中:k是玻尔兹曼常数;T是绝对温度;e是元电荷;EF是费米能量。光热电探测器的灵敏度取决于光热转换效率和热电转换效率。通过天线、吸收体结构等增强入射光与光敏材料的相互作用,可以提高光热转换效率。热电转换效率可以通过材料的功率因子(PF=S2σ)和热电优值(ZT=S2σT/κ,其中κ是材料的热导率)来评价,功率因子和热电优值越大,材料的热电转换效率越高。为了实现高热电转换效率,材料应具有较大的Seebeck系数(以建立较高的开路电压)和较高的载流子迁移率(以提升导电性),同时还应具有较低的热导率(以建立较大的温差)。

目前适合用于柔性光热电探测器的光敏材料可以分为三类,如图2所示。第一类是具有较高电导率和载流子迁移率的碳纳米材料,主要包括碳纳米管(CNTs)和石墨烯。它们最大的优点是具有超宽带光吸收和高迁移率,在室温下载流子迁移率可达到105 cm2·V-1·s-1[9-10。随着这类材料的制备工艺逐渐完善,很多人将其应用在柔性光热电探测器中。第二类是无机化合物半导体材料,主要包括拓扑绝缘体、金属卤化物、MXene等。传统的无机化合物热电材料一般具有较大的Seebeck系数,但通常为块体,不具有柔性特征,可以通过制备二维材料或者纳米薄膜赋予其柔性。第三类是以导电高分子材料为代表的有机柔性半导体。近年来对这类材料的广泛研究已经证明其能够应用在各种柔性器件上,但由于其自身的Seebeck系数较低,通常须掺杂热电性能更好的无机纳米材料来改善其光热电性能。

图 2. 典型的柔性光热电探测材料

Fig. 2. Typical flexible detection materials based on PTE effect

下载图片 查看所有图片

2.2 光热电探测器的性能指标

与常规的光电探测器类似,光热电探测器的性能通常用光响应度、响应时间、截止频率、噪声等效功率、归一化探测率等指标来评价。

1)光响应度

光响应度衡量的是探测器对入射光信号的响应灵敏度。当功率为P的光入射到探测器上时,探测器输出的光生电流或光生电压表示为Ip=RIPVp=RVPIpVp分别表示光生电流和光生电压,RIRV即被称为光电探测器的响应度,单位分别为A/W和V/W。

2)响应时间和截止频率

响应时间反映的是探测器对信号的响应速度,包括上升时间和下降时间。上升时间和下降时间通常分别定义为从光生电流的10%上升到90%以及从90%降低到10%所需要的时间。

光热电探测器的响应度随入射光调制频率f的升高而降低,其表达式为

Rf=R01+2πf2

式中:R0表示调制频率为0时的响应度。一般规定Rf)下降到Rf=R0/2= 0.707R0时的调制频率为探测器的响应截止频率。

3)噪声等效功率

噪声等效功率(NEP,在公式中记为NEP)又称最小可测功率,是使探测器输出信号能够从噪声电压或电流中检测出所需的最小入射信号功率,是衡量光电探测器接收弱信号能力的参数。NEP最常用的定义如下:在1 Hz输出带宽中,信噪比为1时所需的输入信号功率11。对于光热电探测器,NEP标志着探测器的灵敏度,单位为W/Hz1/2

4)归一化探测率(D*

归一化探测率又称比探测率,也是表征光电探测器对弱信号探测能力的参数。D*被定义为D*=A/NEP,其中A表示有效面积,D*的单位是cm·Hz1/2·W-1或者直接用琼斯(Jones)来表示。当噪声(如散粒噪声)与有效面积的平方根相关时,使用D*可以方便地比较探测器的探测能力。

3 碳材料柔性光热电探测器

由于具有独特的晶体结构和优良的电学、光学、热学及力学性能,碳纳米管和石墨烯在光电探测器中展现出了巨大的应用潜力12-13。此外,一维碳纳米管和二维石墨烯作为低维材料,相比于传统的无机热电材料具有更小的尺寸和更大的表面体积比,在柔性电子方面展现出了更优异的性能14-16。随着对碳材料性能的逐渐了解以及碳材料制备工艺的改进,部分研究人员开始以碳材料为主体来制备柔性光热电探测器,这也是柔性光热电探测领域研究的一个新趋势。

3.1 碳纳米管柔性光热电探测器

碳纳米管可以看作是单层碳原子卷起形成的空心圆柱体,具有高的纵横比(可大于1000),因此具有一维纳米结构的特征,如图3所示17。通过带内跃迁和带间跃迁过程,碳纳米管能够吸收从紫外线到太赫兹波段的超宽光谱范围内的电磁波18-19,具有超宽带特性与高载流子迁移率,因此其能够作为高速宽带光电探测器以及高效太阳能电池的光敏材料20-21。此外,碳纳米管具有优异的机械和化学稳定性,且室温下的Seebeck系数可以达到260 μV·K-1,适合用于制作柔性光热电探测器22

图 3. 碳纳米管示意图17。(a)单壁碳纳米管(SWCNT);(b)多壁碳纳米管(MWCNT)

Fig. 3. Schematic diagram of CNT[17]. (a) Schematic diagram of an SWCNT; (b) schematic diagram of an MWCNT

下载图片 查看所有图片

碳纳米管光热电探测器的一个重要应用是太赫兹探测器。太赫兹探测器是太赫兹传感、成像、通信等系统中的核心器件23-24。传统的太赫兹探测器在灵敏度、带宽等方面存在局限性,因此探索全新的太赫兹探测器制备方法或材料体系具有重要意义。目前人们已经报道了在低温下使用天线耦合和单个金属单壁碳纳米管进行太赫兹探测的工作25,也研究了单管器件中太赫兹频率的电子传输现象26-27。碳纳米管的一个特殊优势是能够通过调节管径、长度、手性等参数对其光电性能进行优化,从而增强光响应。2014年,He等28开发了一种室温碳纳米管p-n结太赫兹光热电探测器,该器件无须供电,具有紧凑、柔性等特点,能够实现宽带响应且具有偏振选择性。如图4(a)~(b)所示,该探测器的沟道是超长顺排碳纳米管阵列,它们能在宽光谱范围内强烈吸收太赫兹辐射,具有极高的偏振灵敏度。该研究结果表明,通过对材料的热学和电学性能进行进一步设计,结合碳纳米管卓越的机械强度和柔性,可以促进新型碳基太赫兹探测器的发展。

图 4. 不同类型的碳纳米管柔性太赫兹光热电探测器。(a)偏振灵敏的碳纳米管太赫兹光热电探测器示意图28;(b)弯曲的碳纳米管薄膜照片与水平排列的碳纳米管的光学显微图像28;(c)对注射器进行多视图扫描拍摄的图像(在不使用大体积部件的情况下检测到注射器上的破损)29

Fig. 4. Different types of CNTs flexible THz PTE detectors. (a) Schematic diagram of polarization-sensitive carbon nanotube PTE detector[28]; (b) photograph of the curved CNT film and optical microscopy image of horizontally aligned CNTs[28]; (c) omnidirectional image taken by multi-view scan of a syringe (a breakage on the syringe is detected without bulky components)[29]

下载图片 查看所有图片

2016年,Suzuki等29开发了可弯曲的太赫兹相机,并演示了弯曲样品的360°多视角太赫兹成像,如图4(c)所示。为了进一步提高碳纳米管太赫兹光电子器件的性能,了解应变在柔性器件中的作用,该团队又报道了一种不同的太赫兹响应方案30:通过在弯曲的单壁碳纳米管薄膜应变区域的边缘构建两个结来实现应变诱导的太赫兹光热电探测。基于热传导方程的估算表明,应变诱导的太赫兹响应增强源于该区域Seebeck系数的提高。为了进一步增强单壁碳纳米管的响应灵敏度,Suzuki团队31提出并尝试了单壁碳纳米管薄膜与不同电极之间的串联组合。研究发现,与传统的并联组合相比,使用铋(Bi)电极串联能够将探测灵敏度提高约17倍。该方案表明p型碳纳米管薄膜沟道和高负Seebeck系数金属电极的串联耦合能实现更好的光探测性能。可见,通过优化电极材料,可以进一步提高太赫兹光热电探测器的灵敏度。2021年,Suzuki团队32据此设计了能够对毫米波到可见光波长区域的电磁波进行灵敏探测的器件,其在非制冷非真空条件下的最小噪声等效功率为5 pW·Hz-1/2

基于对碳纳米管材料的探索,Suzuki团队33近年来开始设计不同构型的柔性碳纳米管光热电探测器,以适应不同的使用场景,如图5所示。他们将探测器和3D打印热电发电机(TEG)融合,同时开发了高度集成的π-形状像素结构,最终实现了无损成像检测34。2020年,他们基于可拉伸太赫兹探测器,通过集成的方法设计出了能够在目标溶质流动时通过液体溶剂清晰地感知黑体辐射强度变化的探测器件,从而实现了可穿戴和非浸入式液体质量监测35。2021年,他们设计了一种机器人辅助操作且具有植入式光源和成像器的多视角宽带光探测平台。这种基于柔性碳纳米管薄膜的光电器件设计有助于对实际三维工业组件进行非破坏性的多视角检查36。2022年,他们设计了可拉伸的光传感器贴片,将其包装后置于管道表面,无须采样即可对流经软管的液体进行无源的动态化学监测37。可以看到,根据不同的应用场景对碳纳米管材料进行设计,已经成为柔性光热电探测领域的一个重要研究方向。

图 5. 应用于不同场景的碳纳米管柔性光热电探测器。(a)高度集成的π-形状像素结构34;(b)碳纳米管可拉伸器件中的光致电压响应与p-n结数量的关系35;(c)玻璃瓶中胶囊的反射式无损多视图成像检测36;(d)可拉伸宽带光传感器阵列照片37

Fig. 5. CNT flexible PTE detectors for different applications. (a) Schematic diagram of high integrated π‑shaped pixel structure[34]; (b) photo-induced voltage response as a function of the number of series PN junction of the present CNT film-based stretchable device[35]; (c) non-destructive reflective multi-view stereoscopic photo-imaging inspection of capsules in a glass beverage bottle[36]; (d) photos of stretchable broadband optical sensor array sheet[37]

下载图片 查看所有图片

除了将柔性光热电材料应用在各种工业场景,人们也在探索将其与可穿戴技术结合,开发出具有更多功能的可穿戴设备。基于有机材料的柔性光电子器件在过去10年中取得了令人瞩目的进展,但它们的制造工艺复杂,且与通用编织技术兼容性不好,性能还有待提高,因此没有得到规模化应用。Zubair等38向纤维中掺杂高度定向的碳纳米管,制成了柔性光热电探测器。这种探测器能够对紫外线到太赫兹波段的宽带电磁辐射作出响应,并在整个光谱范围内具有低的噪声等效功率(约为nW·Hz-1/2)。之后,他们制造了一个由数十个p+-p-结组成的1 m长的器件,然后把它缝制到一件Polo衫上,如图6所示。进行200次弯曲半径小于100 μm的弯曲试验以及标准洗涤和熨烫测试后,器件性能没有出现下降的迹象。这种非传统的光电探测器将在需要探测电磁辐射的可穿戴设备中得到应用。

图 6. 可缝制在Polo衫上的碳纳米管光热电探测器38。(a)缝制在Polo衫上的碳纳米管纤维探测器;(b)~(c)探测器的正面与背面,即Polo衫的外侧和内侧;(d)p+-p-连接处位于Polo衫外部,而p--p+连接点隐藏在Polo衫内部;(e)探测器的两端均连接到外部电路,用于测量感应光电压;(f)I-V特性曲线,曲线在照明下向上移动

Fig. 6. CNT PTE detectors that can be sewn on a Polo shirt[38]. (a) A carbon nanotube fiber detector sewn on the Polo shirt; (b)‒(c) the front and back of the detector, that is the outside and inside of the Polo shirt; (d) p+-p- junction is located outside the Polo shirt, while the p--p+ junction is hidden in the Polo shirt; (e) both ends of the detector are connected to an external circuit for measuring the induced light voltage; (f) I‑V characteristic curve, the curve moves upward under illumination

下载图片 查看所有图片

将柔性光热电探测器排成探测器阵列可以制成柔性光热电成像仪,从而能够在复杂条件下进行无损检测。如何实现探测器对准排列是制作探测器阵列的重要问题。Suzuki等39提出了一种自对准抽滤工艺,如图7(a)所示,他们先在聚酰亚胺薄膜上制作图案化狭缝,然后利用狭缝对碳纳米管溶液进行抽滤,使碳纳米管跨接在狭缝两端,形成薄膜探测器单元。Sakai等40使用喷墨的方式制造了基于碳纳米管薄膜的宽带柔性光热电成像仪,它能够在太赫兹到毫米波范围内成像,如图7(b)~(d)所示。相比于Suzuki等提出的抽滤技术,这种制造光热电探测器的方法更容易实现集成,从而获得分辨率更高的成像仪。

图 7. 不同对准方式制成的碳纳米管柔性光热电探测器阵列。(a)自对准抽滤工艺示意图39;(b)使用喷墨方式制成的碳纳米管成像仪照片40;(c)~(d)碳纳米管柔性光热电成像仪对刀片进行成像40

Fig. 7. CNT flexible PTE detector arrays fabricated with different alignment methods. (a) Schematic diagram of the self-aligned filtration process[39]; (b) photograph of the all-printable CNT film flexible PTE imager[40]; (c)‒(d) a knife image obtained by CNT flexible PTE imager[40]

下载图片 查看所有图片

3.2 石墨烯柔性光热电探测器

石墨烯是由碳原子以sp2杂化连接的二维原子晶体,具有特殊的电子能带结构41。石墨烯中的电子服从狄拉克方程42,这意味着它表现为无质量的狄拉克费米子,可以进行远距离弹道输运。在这种输运模式中,电子可以在不发生散射的情况下进行长距离移动,因此具有极高的载流子迁移率43。此外,石墨烯的硬度高,同时具有良好的韧性和延展性,可以弯曲,因此很多人将石墨烯引入柔性器件领域44

2014年,Liu等45设计了一种制造大面积柔性、透明石墨烯光热电探测器的方法。他们利用化学气相沉积(CVD)技术生长石墨烯,并在生长过程中进行n型掺杂,从而在选定区域内得到大量的p-n结,如图8(a)所示。通过这种高效的化学掺杂技术能够制备大面积柔性、透明的光热电探测器,并且可以根据需求设计不同的探测器形状。该探测器具有良好的响应度,并且在多次弯曲后也能保持探测性能。化学气相沉积技术通常用于制备高质量的石墨烯薄膜,考虑到其制备成本和工艺复杂性,Banerjee等46提出了另一种制造石墨烯光热电探测器的方法。他们首先制作了由多个随机分布的石墨烯纳米片组成的石墨烯油墨,然后将石墨烯油墨印刷在柔性基板上,得到了石墨烯薄膜。利用该方法制备的石墨烯柔性光热电探测器具有较高的比探测率,比探测率最高可达1012 Jones,同时该光热电探测器在弯曲状态下也能保持良好的性能,如图8(b)所示。

图 8. 不同方法制成的石墨烯光热电探测器。(a)石墨烯柔性光热电探测器光响应测试示意图(左)和实物图(右),通道由p型(红色)和n型(蓝色)石墨烯组成45;(b)石墨烯探测器在应变下的电特性测量示意图46

Fig. 8. Graphene PTE detectors fabricated by different methods. (a) Schematic diagram (left) and experimental photo (right) show photoresponse test of graphene flexible PTE detector, where the channel is composed of p-type (red) and n-type (blue) graphenes[45]; (b) schematic illustration of the electrical characteristic measurement for the graphene detector under strain[46]

下载图片 查看所有图片

还原氧化石墨烯(rGO)也可以用来制作石墨烯柔性光热电探测器。通过化学氧化可以制备微米级厚度的氧化石墨烯(GO),其表面带有含氧官能团,具有良好的水溶性,可以通过印刷或喷涂方法制成薄膜。对GO进行高温退火处理,去除这些官能团,就可以获得rGO。相比于化学气相沉积、液相剥离等方法,这种方法不仅提高了石墨烯的产量,而且能够方便地制备光吸收率更高的微米级石墨烯薄膜,更适合用于制备光热电探测器。Wen等47制备了悬空的柔性rGO光热电探测器,这种器件具有较高的光热电转换效率,从而表现出了更高的光响应。此外,退火温度对探测器性能存在影响,如图9所示,响应度随着rGO退火温度的升高而降低,但响应时间随退火温度的变化不大。这项研究证明rGO可以很好地应用在柔性光热电探测领域。

图 9. 悬空的rGO光热电探测器以及退火温度对其光响应特性的影响47

Fig. 9. Schematic diagram of a suspended RGO photodetector and the effect of annealing temperature on its photoresponse[47]

下载图片 查看所有图片

三维(3D)石墨烯,即rGO纳米片交织形成的多孔网状结构,不仅具有单层石墨烯的光学和电学特性,而且表现出了更高的光吸收和更好的热学性能48-49,在光热电探测方面具有独特优势50。此外,将石墨烯与一些具有高Seebeck系数(如La0.9Sr0.1NiO351)和超低热导率(如CH3NH3PbI352)的材料复合可进一步提升探测性能。Li等53在激光刻蚀还原氧化石墨烯(LSG)活性层中引入CsPbBr3晶体并将其作为添加剂,同时采用聚对苯二甲酸乙二醇酯(PET)作为柔性衬底,制备了自供电的超宽带柔性光热电探测器,如图10所示。在该器件中,CsPbBr3的引入促进了光吸收,从而提高了光响应。LSG/CsPbBr3光热电探测器在紫外线到太赫兹波段的超宽带波长范围内响应灵敏,对紫外线和太赫兹波段的响应率分别为135 mA·W-1和10 mA·W-1。CsPbBr3的引入还将响应速度提高了10倍,响应时间达到了18 ms。此外,连续弯曲测试结果显示该器件具有良好的灵活性和稳定性。

图 10. LSG/CsPbBr3光热电探测器的制作过程和结构示意图53。(a)~(e)制作过程;(f)结构示意图

Fig. 10. Manufacturing process and structure diagram of LSG/CsPbBr3 PTE detector[53]. (a)‒(e) Manufacturing process; (f) structure diagram

下载图片 查看所有图片

4 无机化合物柔性光热电探测器

传统的热电材料以碲化铋基无机物为主,这类块体材料一般具有较高的Seebeck系数和较低的热导率,但是由于电导率、Seebeck系数和热导率之间相互影响,很难独立地优化其中的一个参数,其室温热电优值一般在1以下54。近年来的研究发现,低维材料中的量子限制效应可以提高功率因子,而其界面及边界对声子的散射又可以降低热导率,因此低维无机热电材料的热电优值可以达到2以上55。对无机化合物热电材料进行纳米化处理,不仅能提高其热电优值,还能改变材料的内部结构,使得原本刚性的块体材料柔性化,从而能够制备以无机化合物半导体材料为主体的柔性光热电探测器。

近年来,人们不断探索用于制备柔性光热电探测器的无机材料。一般来说,具有宽带吸收、良好的热电性能并且易于柔性化的材料会被优先考虑。硒化锡(SnSe)是一种性能优秀的热电材料,具有超过500 μV·K-1的高Seebeck系数和约0.7 W·m-1·K-1的低热导率,已经被广泛应用于热电领域56。此外,SnSe在中红外波段还具有较高的光吸收57。这两个优点使得其成为构建高性能光热电探测器的理想候选材料。Zhong等58制成了基于SnSe多晶薄膜的自供电柔性光热电探测器。SnSe薄膜在550 K下的热电优值为0.15,功率因数为0.322 mW·m-1·K-2。与SnSe单晶相比,SnSe薄膜具有更大的带宽,并且表现出更高的响应度和更快的响应速度。

拓扑绝缘体(TI)由于体电子态的拓扑结构而表现出与一般金属和绝缘体不同的量子现象,因而具有独特的光学、热学和电学性质。拓扑绝缘体得益于其表面态的相对论性狄拉克色散关系,能够用于宽带电磁波探测,因此引起了广泛关注。例如,由Bi2Te359制成的光热电探测器在紫外至近红外波段具有约1010 cm·Hz1/2·W-1的高比探测率和约4 mA·W-1的光响应度。Zhou等60利用化学气相沉积技术生长的铋薄膜制备了波长范围为405~1064 nm的柔性光热电探测器,如图11(a)~(c)所示。Niu等61利用HfTe5制备了太赫兹到紫外波段的超宽带柔性光热电探测器,其对所有波段的响应度均大于1 V·W-1。如图11(d)~(e)所示,该探测器在多种弯曲半径下都能保持良好的光响应。

图 11. 不同无机化合物柔性光热电探测器。(a)~(c)铋薄膜柔性光热电探测器示意图及柔性测试60;(d)处于弯曲状态的HfTe5光热电探测器61;(e)HfTe5柔性探测器在不同弯曲半径下的光电压61;(f)SnTe光热电探测器经过不同弯曲循环次数后的光响应64

Fig. 11. Flexible PTE detectors based on different inorganic compounds. (a)‒(c) Schematic diagram and flexibility test of Bi film flexible PTE detector[60]; (d) image of HfTe5 photodetectors in a flexed state61; (e) photovoltage of the flexible HfTe5 device at different bending radius[61]; (f) photoresponse of SnTe PTE detector after different bending cycles[64]

下载图片 查看所有图片

拓扑绝缘体与其他材料组成的异质结也可表现出优秀的光响应,比如:拓扑绝缘体/石墨烯异质结光电探测器在532 nm光照射下的光响应度高达35 A·W-1[62,拓扑绝缘体/硅异质结光电探测器能响应从紫外波段到太赫兹波段的电磁辐射63。与拓扑绝缘体相比,拓扑晶体绝缘体(TCI)中的晶体对称性能够保护其拓扑表面态。例如,在SnTe中,由体缺陷和位错引起的散射可以自然地被抑制,这使得SnTe在开发无耗散光电器件方面具有巨大潜力。Liu等64将外延生长的SnTe薄膜转移到柔性基板上,以此制造了柔性光热电探测器,该探测器在数百个弯曲周期中表现出优异的机械灵活性,并且保持了1010 Jones的比探测率,如图11(f)所示。

金属卤化物以其简单的加工方法和独特的光电特性,近年来也被用作光热电探测器的光敏材料65。一些研究表明,CH3NH3PbI3可用于制作超宽带光热电探测器66-67,CH3NH3PbI3光热电探测器对太赫兹到紫外波段的光辐射具有纳秒级的快速响应时间以及102~105 mA·W-1的光响应度68。Gu等65使用双源共蒸发沉积技术制备了无铅Cs3Cu2I5柔性薄膜,该薄膜在320~2000 nm波长范围内具有80%以上的光学透明性。用Cs3Cu2I5薄膜制作的器件在零偏压下可以实现从可见光(532 nm)、近红外(980 nm)到太赫兹(119 μm)范围的自供电光热电探测。该探测器具有超过1 mA·W-1的光响应度和约106 cm·Hz1/2·W-1的比探测率。进一步,Gu等将15×15个探测单元组合成阵列,如图12所示,展现了其在光学成像方面的应用潜力。

图 12. Cs3Cu2I5柔性光热电探测器65。(a)紫外光照射下柔性光热电探测器阵列的照片;(b)弯曲后柔性光热电探测器阵列的照片;(c)使用探测器阵列对物体成像的过程图;(d)三维图显示了光热电探测器阵列每个像素上的光电流

Fig. 12. Cs3Cu2I5 flexible PTE detectors[65]. (a) Photo of flexible PTE detector array under UV irradiation; (b) photo of flexible PTE detector array after bending; (c) process of imaging objects using detector array; (d) three-dimensional diagram shows the photocurrent on each pixel of the PTE detector array

下载图片 查看所有图片

相比于二维材料,准一维材料具有更小的尺寸和更大的表面体积比,更易于实现探测器的集成。根据渗流理论,准一维材料高纵横比的链状结构特征,降低了形成导电网络所需的临界密度,因此能够使用较少的材料实现高导电性68。此外,准一维结构减少了晶界或缺陷,具有优异的机械稳定性,可以应用于柔性电子器件69。在最近的研究中,准一维过渡金属硫族化合物,包括TiS3、ZrS3、ZrSe3、HfS3和HfSe3,已被证明是具有一定潜力的光热电材料70-73。Wu等19设计了一种基于NbS3的光热电探测器,其在室温下可以实现从紫外光到太赫兹波的超宽带光响应。该器件在零偏压下显示出了高响应度(大于1 V·W-1)和快速光响应(≈7 ms),响应时间远小于由毫米级石墨烯、三元硫系单晶等材料制成的超宽带光电探测器。此外,该器件还表现出了良好的柔性和环境稳定性,如图13所示。

图 13. NbS3柔性光热电探测器19。(a)NbS3柔性光热电探测器弯曲测试示意图;(b)探测器实物图;(c)NbS3柔性光热电探测器的空气稳定性测量

Fig. 13. NbS3 flexible PTE detectors[19]. (a) Schematic of NbS3-based PTE detector in a flexed state; (b) photo of NbS3-based detector; (c) air stability measurement of NbS3-based device

下载图片 查看所有图片

MXene是一类新型的类石墨烯二维晶体材料——过渡金属碳/氮化物(化学式为Mn+1XnTx,其中M是钛、钒等过渡金属,X是碳或氮元素,Tx是表面官能团)74。作为一种具有独特电磁特性的新型材料,MXene在宽光谱范围呈现出了显著的光吸收,有些甚至是典型的等离激元吸收,这使得它适用于光热转换。Cheng等75采用一种简单的方法制备了具有较高光热转换效率的Ti3C2Tx/离子液体油墨。Ti3C2Tx呈现典型的等离激元吸收峰,就像贵金属纳米结构一样76,因此它可以达到更高的近红外光利用率。制备的油墨在各种基底上具有良好的润湿性,将墨水包装成笔芯后,只需在柔软的表面上书写即可轻松获得柔性器件,这也是未来柔性光热电器件的一种新的应用形式。

图 14. 用Ti3C2Tx墨水笔在不同的基材上书写75。(a)用笔在织物、PS泡沫、木材和PE泡沫表面绘制4种中国传统植物的图案;(b)基于该墨水制备的不同宽度的织物芯片

Fig. 14. Ti3C2Tx ink pen writes on different substrates75. (a) Use a pen to draw pictures of four traditional Chinese plants on the surface of fabric, PS foam, wood and PE foam; (b) photos of fabric chips based on the ink with different widths

下载图片 查看所有图片

5 有机材料柔性光热电探测器

有机热电材料具有柔性好、热导率低、安全无污染、成本低等优点77-79,但它们的Seebeck系数一般比较低,由此导致了较低的功率因子。目前提高有机热电材料性能的方法主要有两种:一是利用酸或有机溶剂等对其进行掺杂,通过调节掺杂比例使热电性能达到最优值;二是将有机热电材料与无机纳米半导体或者碳纳米材料进行复合,复合物一般兼具有机材料较高的电导率和无机纳米材料较高的Seebeck系数,其热电性能有较为显著的提高80。近年来,有机热电材料和器件已经在性能上取得了较大突破。例如,通过对聚(3,4-亚乙基二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)进行掺杂,材料的热电优值达到了0.4281。Sun等82报道了一种n型热电材料1,1,2,2-乙烯四硫醚(ett)-金属配位聚合物——聚[Kx(Ni-ett)],其具有0.2的热电优值。鉴于有机材料通常还具有极高的灵活性,利用有机热电材料制备柔性光热电探测器也是一个重要的方向。

有机导电聚合物,如聚吡咯(PPy)83、聚苯胺(PANI)84和PEDOT85-86,是有机热电材料的典型代表,具有柔性、易于聚合、制备简单和成膜性好等特点,易于进行结构设计,并且具有优异的热电性能,因此适用于制备柔性光热电器件87-89。其中,PEDOT具有出色的Seebeck效应和导电性90,而PPy在红外波段具有优异的光热转换性能,因此将PEDOT与PPy复合可开发出具有较高光热电转换能力的材料。如图15所示,Zhang91等以聚丙烯为基底,采用低温界面聚合制得了PPy-PEDOT-PPy光热电复合织物。该织物具有柔软、可导电的特性,可用于柔性可穿戴器件。聚多巴胺(PDA)也是一种优秀的红外光吸收材料,因此,Zhang等92在PEDOT中引入PDA以诱导PEDOT形成分层结构。基于PEDOT的纺织品的顶面具有优异的热电性能,功率因子可达到88.70 nW·m-1·K-2,并且底面具有良好的光热效应,由此Zhang等开发了基于PEDOT的光热电纺织品。

图 15. 双壳结构热电织物的制备过程及其柔性和导电性演示91

Fig. 15. Preparation process of thermoelectric fabric with double shell structure and demonstration of its flexibility and conductivity[91]

下载图片 查看所有图片

对于掺杂的有机半导体聚合物,传统的块体供体/受体(D/A)异质结在平衡光载流子产生和电荷传输方面通常会受到限制,因此不能在光电探测器相关应用中实现高性能93。为了解决这一问题,人们开发了不同种类的多层结构,以促进光载流子的产生,从而赋予光电探测器更好的性能。Ji等94通过优化能级结构,制作了具有分层异质结的半导体聚合物PDPP4T,并实现了高效的光热电转换。这种异质结由一个IDTBT:PC61BM异质结光敏层和一个单独的PDPP4T层组成,该结构有助于激子分离和空穴注入PDPP4T电荷传输层。由于这种独特的结构,该光电晶体管表现出了9.2×106 A·W-1的响应度。如图16所示,他们利用这种异质结构建了一个用于成像的光电探测器阵列和一个柔性光热电发电机。

图 16. 基于PDPP4T的柔性光热电探测器94。(a)利用光热电探测器阵列对“PTE”字母进行成像;(b)阵列在100 mW·cm-2光强下的传感图像;(c)柔性光热电发电机原型的照片;(d)典型光热电发电机在无光照和100 mW·cm-2白光强度下的输出电压和功率

Fig. 16. Flexible PTE detectors based on PDPP4T[94]. (a) Imaging the letters “PTE” with PTE detector array; (b) sensing image of the array under 100 mW·cm-2 light intensity; (c) photo of flexible PTE generator prototype; (d) output voltage and power of a typical PTE generator under the dark environment and 100 mW·cm-2 white light intensity

下载图片 查看所有图片

为了获得最佳的光吸收,一种方法是通过调节D/A交替共聚物的分子轨道来调节其能隙95-97,另一种方法是将p型或n型半导体掺杂到聚合物薄膜中,利用电荷转移实现光吸收98-99。Hasegawa等100综合上述两种方法的优点,设计并合成了p型噻吩异靛蓝基聚合物PTII以及具有超低能隙的新型n型聚合物TzQI-TDPP,它们可以很好地吸收2200 nm红外光。PTII和TzQI-TDPP薄膜无须添加任何掺杂剂即可分别表现出p型和n型光热电效应。如图17所示,TzQI-TDPP和PTII在波长为1700 nm、功率密度为7.8 W·cm-2的近红外光照射下温度分别升高了11.7 ℃和14.4 ℃,Seebeck系数分别达到282 μV·K-1和-306 μV·K-1,功率因子分别为0.18 μW·m-1·K-2和0.013 μW·m-1·K-2。该结果表明PTII和TzQI-TDPP可用于柔性光热电探测器的研制,同时为人们寻找新型柔性光热电探测材料提供了新思路。

图 17. 基于PTII和TzQI-TDPP的柔性光热电探测器100。(a)p型沟道噻吩异靛蓝基均聚物PTII以及n型沟道聚合物TzQI-TDPP的合成;(b)光热电器件示意图;(c)1700 nm近红外激光照射下薄膜表面的温度

Fig. 17. Flexible PTE detectors based on PTII and TzQI-TDPP[100]. (a) p-channel thiophene isoindigo based homopolymer PTII and the synthesis of n-channel polymer TzQI-TDPP; (b) an illustration of PTE device configuration; (c) thin-film surface temperature under 1700 nm NIR laser irradiation

下载图片 查看所有图片

6 有机无机复合材料柔性光热电探测器

传统的无机热电材料,如碲(Te)、铋(Bi)基材料,具有较大的Seebeck系数和较低的热导率,因此具有较好的热电性能,这使得它们在热电领域被广泛应用。但是,这些传统的无机热电材料固有的刚性限制了其在柔性领域的发展。与之相比,包括导电聚合物在内的大部分有机材料具有较好的柔性,但是它们较低的Seebeck系数同样限制了其在热电领域的发展。因此,许多研究人员将有机热电材料与传统无机热电材料复合,综合二者优点制成了有机无机复合材料,这种复合材料具有良好的柔性和导电性、低导热性、优秀的成膜性及力学性能,是非常有前景的柔性光热电材料。将这种材料应用在柔性光热电探测器上已成为近年来的研究热点。

PEDOT:PSS具有电导率高、稳定性好和热导率低的优点67,是制备柔性光热电器件的理想材料。Liu等101在PEDOT:PSS中添加碲纳米线制造了复合材料,并详细研究了它的热电及光热电性能。结果表明,这种材料综合了碲纳米线优异的热电性能和PEDOT:PSS的柔性,能够很好地应用在光热电探测上。这项工作为基于光热电效应的太阳能收集开发提供了一种新途径。

有机热电材料的光热电性能取决于活性层的光热转换效率和热电性能,而具有强的光吸收是其成为光热电材料的重要条件。Huang等102证明了聚[Cux(Cu-ett)]在近红外区域具有强的光吸收以及较高的光热转换率,因而具有出色的光热电性能。如图18所示,为了将这种材料制成柔性薄膜,他们将聚[Cux(Cu-ett)]与聚偏二氟乙烯(PVDF)材料复合制备了近红外波段的光热电探测器,其在17 W·cm-2功率密度下获得了12 mV的光热电电压,可用于太阳能发电。此外,他们还证明了近红外光可以通过光诱导提高[Cux(Cu-ett)]:PVDF的Seebeck系数,这也是一种优化有机材料热电性能的新思路。

图 18. 基于[Cux(Cu-ett)]:PVDF的柔性光热电探测器102。(a)聚[Cux(Cu-ett)]和PVDF的分子结构;(b)三种材料的吸收光谱;(c)~(e)光热电器件制造过程示意图

Fig. 18. Flexible PTE detectors based on [Cux(Cu-ett)]:PVDF[102]. (a) Molecular structure of poly [Cux(Cu-ett)] and PVDF; (b) absorption spectra of three materials; (c)‒(e) schematic diagram of manufacturing process of PTE device

下载图片 查看所有图片

等离激元效应可以增强光与物质的相互作用,实现更强的光吸收。与常规纳米晶体材料相比,金纳米颗粒可以激发等离激元,获得较高的光热转换效率103。因此,Xin等104首先将PEDOT:PSS与三种不同的无机材料(Ag2SeMoS2纳米片和商用铟掺杂氧化锡薄膜)耦合制成p-n型热电材料,然后将胶体等离激元金纳米粒子(Au NPs)掺杂到三种复合材料中,在柔性PET基片和聚丙烯上制备了柔性光热发电器件。结果表明,引入Au NPs可以增强器件的光热电响应,为提高光热发电器件输出功率提供了新思路。此外,他们将Au NPs涂层PEDOT:PSS/Ag2Se材料与可穿戴设备相结合制备的装置对太阳光谱的可见光部分表现出高光敏性,在自然光照射下,该装置的输出电压高达24 mV,如图19所示。

图 19. 基于胶体等离激元金纳米粒子的柔性光热电探测器104。(a)Au NPs的TEM图像;(b)Au NPs涂层PEDOT:PSS/Ag2Se器件的光学图像;(c)~(d)在聚丙烯非织造布上制备的Au NPs涂层PEDOT:PSS/Ag2Se混合光电器件的电压输出

Fig. 19. Flexible PTE detectors based on colloidal plasmonic gold nanoparticles[104]. (a) TEM image of Au NPs; (b) optical image of the flexible Au NPs-coated PEDOT:PSS/Ag2Se hybrid PTE generators; (c)‒(d) voltage output of PEDOT:PSS/Ag2Se hybrid optoelectronic devices coated with photothermal Au NPs prepared on polypropylene nonwovens

下载图片 查看所有图片

聚合物与碳纳米复合材料综合了二者优异的热电性能与柔性,并且其制备工艺简单,适合应用于柔性光热电探测领域。Stokes等105报道了一项基于聚(3-己基噻吩)-嵌段聚苯乙烯(P3HT-b-PS)和MWCNT复合的研究,与纯MWCNT薄膜相比,复合薄膜的光响应度提升了164%。Kuriakose等106研究了PANI和CNT复合材料的光热电效应。Zhang等107将PEDOT:PSS与石墨烯复合得到了柔性、半透明和自供电的中红外探测器。他们在聚乙烯醇(PVA)基板上制备了石墨烯和PEDOT:PSS复合材料,并构建了高灵活性和高透明度的光热电探测器,其探测率比纯PEDOT:PSS高22倍。复合薄膜与PVA衬底之间接触良好,连接稳固,探测器可以弯曲成半径为1 mm的曲面,具有良好的柔性。此外,他们使用该器件测量了人体发射的辐射信号,证明了其用于穿戴设备的可能性。Wang等108将CNT与PEDOT:PSS复合制成的探测器在宽带黑体辐射下的最高比探测率为1.9×107 Jones。Jin等109将PEDOT:PSS/螺旋碳纳米管(HCNT)混合物和PEDOT:PSS连续滴涂到衬底上,制备了具有伪双层结构(PBA)的柔性PTE薄膜,该薄膜在166.01 mW·cm-2照射下获得了2.55 nW的最大输出功率,并且在10000次弯曲后依然保持良好的性能。Xie等110开发了石墨烯/PANI复合材料。PANI的加入增强了整个复合材料的导电性111,并由此改善了探测器的光热电转换能力。该探测器的峰值光响应度为2.5 V·W-1,比探测率为6.8×107 cm·Hz1/2·W-1。此外,如图20(a)~(b)所示,他们使用10 μV自发辐射光测试了探测器的光响应,验证了其对人体自发辐射具有高灵敏度。2023年,Xie等112又采用喷涂的方法制作了石墨烯/聚乙烯亚胺(PEI)复合光热电探测器,如图20(c)~(d)所示,其比探测率达到了6.05×107 cm·Hz1/2·W-1。他们测试了弯曲次数和弯曲角度对探测器性能的影响,结果表明其具有良好的稳定性。

图 20. 基于石墨烯/PANI复合材料的柔性光热电探测器。(a)石墨烯/PANI复合光热电探测器在手指自发辐射多次激励下的光电压响应(每个周期将指尖放在离光电探测器3~5 mm的地方,并垂直移动)110;(b)PET基底上的8 pixel×8 pixel柔性探测器阵列110;(c)石墨烯/PEI探测器示意图112;(d)石墨烯/PEI探测器在多次弯曲下光电流保持稳定112

Fig. 20. Flexible PTE detectors based on graphene/PANI composite. (a) Photovoltage response of graphene/PANI PTE detectors under multiple excitation of finger spontaneous radiation (place the fingertip 3‒5 mm away from the photodetector in each cycle and move it vertically)[110]; (b) flexible 8 pixel×8 pixel detector array on PET substrate[110]; (c) schematic of the graphene/PEI detectors[112]; (d) stable photocurrent of graphene/PEI detectors under multiple bending cycles[112]

下载图片 查看所有图片

聚苯并咪唑(PBI)是一类典型的芳香杂环聚合物材料,具有优异的热稳定性、化学稳定性和机械强度,已被用于保护纤维、涂层清漆和燃料电池膜113-114。Park等115研究了PBI光纤在三种可见光波长(405、520、635 nm)下的光热转换行为。PBI在高达500 ℃或更高温度下不会熔化,并且具有出色的光热电性能,因而被用作热电和光热电纳米复合材料的聚合物基质。为了开发具有更优异光热电性能且易于加工的先进材料,Park等116又制造了基于PBI的纳米复合薄膜,如图21所示,该材料中多壁碳纳米管的质量分数在1%~20%范围内。PBI/MWCNT复合薄膜的电导率从纯PBI薄膜的1.4×10-5 S·m-1大幅提高到468.6 S·m-1,Seebeck系数从29 μV·K-1增加到约36 μV·K-1。因此,PBI/MWCNT复合薄膜可作为有效的柔性光热电材料应用于可见光捕获和传感领域。

图 21. 基于PBI和MWCNT复合材料的柔性光热电探测器116。(a)PBI/MWCNT纳米复合膜在可见光照射下的光热电表征示意图以及PBI/MWCNT膜的TEM图像;(b)在波长为520 nm、功率为8.87 W·cm-2的可见光照明下,PBI/MWCNT膜边缘处的光热温升(ΔTPT)、光生电压(VPTE)和光生电流(APTE)随时间变化的曲线

Fig. 21. Flexible PTE detectors based on PBI/MWCNT[116]. (a) Schematic for the PTE characterization of PBI/MWCNT nanocomposite films under visible light irradiation and TEM image of PBI/MWCNT film; (b) time-dependent photothermal temperature increase (ΔTPT), voltage generation (VPTE), and electric current generation (APTE) changes of the PBI/MWCNT film at the edge under the visible light illumination with 520 nm and 8.87 W·cm-2

下载图片 查看所有图片

7 柔性光热电探测器性能分析

表1展示了近年来柔性光热电探测器的一些关键性能。综合来看,相比于其他探测机制的光电探测器,柔性光热电探测器的各项性能尚不理想,未达到实际应用要求,因此需要开展更多的工作来进一步优化其性能并促进其实际应用。

由于厚度较小,低维材料对光的吸收率通常较低,从而限制了其探测率,在进行探测器的结构设计和材料选择时需要考虑如何兼顾探测器的柔性和探测性能。为了解决这一问题,一方面可以进一步探索具有高光热电转换能力的材料,目前一些有机小分子已经被报道具有高Seebeck系数117,并且已经证明将一些有机小分子加入到低维材料中可以提高其热电性能118-119;另一方面,可以尝试使用不同的材料制成光热转换层和热电转换层,这样可以分别选择光吸收能力良好的材料和热电性能优异的材料,如PPy和PEDOT88,从而扩展材料的选择。

光敏材料不同的探测器面临着不同的挑战和发展方向。无机化合物虽然具有较大的热电优值,但其在柔性化过程中往往存在热电性能降低的现象80,需要优化柔性化方法,在保持其性能的同时增加其柔性。有机柔性光热电探测器的性能受限于其较低的Seebeck系数,相比于其他材料柔性探测器而言,其性能指标相对较低,因此还需要进一步探索有机光热电材料的物理机制并对新型材料进行结构设计120,以改善其探测性能。目前来看,有机-无机复合材料能够综合无机材料优异的热电性能和有机材料的柔性,制造出性能优异的柔性光热电器件,这也是未来柔性光热电材料的主要研究方向之一。

表 1. 部分代表性柔性光热电探测器的性能指标

Table 1. Key performances of some representative flexible PTEs

MaterialWavelengthResponsivityResponse timeD*/JonesNEPRef.
CNT40 μm‒1.2 mm20 nW·Hz-1/228
CNT375 nm‒118 μm11.7‒17 mA·W-170 ms3.52×10750
CNT fiber /p+-p- junctions405 nm‒96.5 μm0.32 V·W-14.3×1074.4 nW·Hz-1/238
LSG/CsPbBr3405 nm‒118 μm10‒135 mA·W-118 ms1.6×101110 pW·Hz-1/253
NbS3375 nm‒118.8 μm>1.4 V·W-1<7 ms>3.7×105<12.1 nW·Hz-1/219
PdSe24.6‒10.5 μm13 V·W-1∼50 μs6.7×1067 nW·Hz-1/220
HfTe5375 nm‒118.8 µm>1 V·W-1~1 ms>1071.2 nW·Hz-1/261
SnTe404 nm‒10.6 μm~3.9 mA·W-1~80 ms~1.3×101064
Graphene/PANI350‒700 nm2.5 V·W-16.8×107~1.1 nW·Hz-1/2110
Graphene/PEDOT:PSS2.5‒25 µm0.27 V·W-1~20 ms1.4×107106

查看所有表

8 结束语

本文综述了近年来国内外柔性光热电探测器的研究进展。光热电探测器有望用于低成本、非制冷、自供电、超宽带的紫外、可见光、红外和太赫兹波探测。随着低维材料和半导体技术的发展,光热电探测器的性能得到了显著提高,这为零偏压、室温下工作的超快、超宽带光电探测器的研制开辟了新的道路。此外,柔性材料的发展为光热电探测器在可穿戴设备、表面形状复杂物体无损检测方面的应用提供了新途径。然而,除了探测性能的提升之外,柔性光热电探测器的发展和实际应用仍然面临着许多挑战。

未来柔性光热电探测器的发展离不开其柔性性能的提高,但目前还没有统一的评价方法来定量比较不同器件的柔性。本文介绍的各种探测器分别使用了不同的方法来衡量其柔性,例如弯曲半径46或弯曲次数53,或者二者皆有110。因此,为了方便比较各类柔性探测器的性能,促进其在各个领域的应用,需要制定科学而全面的评价标准。一个合理的方法是对于每一种探测器,均测量其弯曲性能和拉伸性能,即在保证其性能不发生明显改变的情况下,测量探测器所能承受的最多弯曲次数、最大弯曲半径、最多拉伸次数和最大拉伸比例。例如,对于可穿戴设备,探测器在使用时根据人体的运动可能会时常发生各种形变,产生弯曲或拉伸变化,所以为了满足柔性光热电探测器的各类应用需求,需要分别对其弯曲和拉伸性能进行测试。

基于柔性光热电探测器的可穿戴设备可以准确、连续地测量人体信息,这在传统设备上是难以实现的。但是,尚存在一些未解决的问题限制了它的应用。例如:需要对材料或结构进行弹性设计,以提高穿戴时其在弯曲和拉伸下的稳定性;通过结构和功能设计提升皮肤表面光热电转换的输出功率;开发高性能柔性光热电纤维与织物,同时设计优化结构,使得可穿戴设备能够透气透湿,具有良好的人体兼容性。此外,尽管目前探测材料的柔性得到了明显提高,但探测器电源、电极、读出电路和数据处理器等器件的柔性还没有被充分研究。对于电源来说,虽然有研究使用基于太阳能的柔性电源121,但随着探测器阵列的集成化,其功耗也在增加,这种电源并不足以支撑整个系统的运行。此外,许多设备使用硅基刚性读出电路,这使得设备整体还是呈现为刚性。尽管已经有研究人员将CMOS电路与图像传感器集成以使读出电路变得具有柔性122,但仍未实现整个系统的完全柔性和小型化。因此,柔性电池和柔性集成电路技术的进一步发展至关重要。

总之,为了促进柔性光热电探测器的发展,仍需对探测材料和结构进行探索和优化以提高其探测性能,同时需要制定全面的评价标准以提高其柔性性能,从而推动柔性光热电探测器的实际应用。

参考文献

[1] Cai S, Xu X J, Yang W, et al. Materials and designs for wearable photodetectors[J]. Advanced Materials, 2019, 31(18): 1808138.

[2] Wang B, Zhang Z B, Zhong S P, et al. Recent progress in high-performance photo-detectors enabled by the pulsed laser deposition technology[J]. Journal of Materials Chemistry C, 2020, 8(15): 4988-5014.

[3] Rogalski A. HgCdTe infrared detector material: history, status and outlook[J]. Reports on Progress in Physics, 2005, 68(10): 2267-2336.

[4] Perera A G U, Matsik S G, Liu H C, et al. GaAs/InGaAs quantum well infrared photodetector with a cutoff wavelength at 35 μm[J]. Applied Physics Letters, 2000, 77(5): 741-743.

[5] 陈俊林, 王小坤, 朱海勇, 等. 冷光学用多波段长波红外探测器杜瓦封装技术[J]. 中国激光, 2022, 49(21): 2110002.

    Chen J L, Wang X K, Zhu H Y, et al. Dewar packaging technology of multiband long-wave infrared focal plane array detectors for cryogenic optics[J]. Chinese Journal of Lasers, 2022, 49(21): 2110002.

[6] 胡明灯, 熊雄, 吴建乐, 等. 红外探测器冷屏设计[J]. 光学学报, 2023, 43(9): 0904001.

    Hu M D, Xiong X, Wu J L, et al. Design of cold shield in infrared detector[J]. Acta Optica Sinica, 2023, 43(9): 0904001.

[7] Masini G, Cencelli V, Colace L, et al. A germanium photodetector array for the near infrared monolithically integrated with silicon CMOS readout electronics[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16(3/4): 614-619.

[8] Cutler M, Mott N F. Observation of Anderson localization in an electron gas[J]. Physical Review, 1969, 181(3): 1336-1340.

[9] Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355.

[10] Kampfrath T, von Volkmann K, Aguirre C M, et al. Mechanism of the far-infrared absorption of carbon-nanotube films[J]. Physical Review Letters, 2008, 101(26): 267403.

[11] Richards P L. Bolometers for infrared and millimeter waves[J]. Journal of Applied Physics, 1994, 76(1): 1-24.

[12] Di J T, Hu D M, Chen H Y, et al. Ultrastrong, foldable, and highly conductive carbon nanotube film[J]. ACS Nano, 2012, 6(6): 5457-5464.

[13] Fan X M, Yu C, Ling Z, et al. Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 2104-2110.

[14] Bindl D J, Wu M Y, Prehn F C, et al. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J]. Nano Letters, 2011, 11(2): 455-460.

[15] Li X X, Deng Z, Li J, et al. Hybrid nano-scale Au with ITO structure for a high-performance near-infrared silicon-based photodetector with ultralow dark current[J]. Photonics Research, 2020, 8(11): 1662-1670.

[16] Stahl H, Appenzeller J, Martel R, et al. Intertube coupling in ropes of single-wall carbon nanotubes[J]. Physical Review Letters, 2000, 85(24): 5186-5189.

[17] GhasempourR, NareiH. CNT basics and characteristics[M]∥Carbon nanotube-reinforced polymers. Amsterdam: Elsevier, 2018: 1-24.

[18] Jintoku H, Matsuzawa Y, Yoshida M. Light-induced fabrication of patterned conductive nanocarbon films for flexible electrode[J]. ACS Applied Nano Materials, 2020, 3(9): 8866-8874.

[19] Wu W D, Wang Y X, Niu Y Y, et al. Thermal localization enhanced fast photothermoelectric response in a quasi-one-dimensional flexible NbS3 photodetector[J]. ACS Applied Materials & Interfaces, 2020, 12(12): 14165-14173.

[20] Dai M J, Wang C W, Ye M, et al. High-performance, polarization-sensitive, long-wave infrared photodetection via photothermoelectric effect with asymmetric van der Waals contacts[J]. ACS Nano, 2022, 16(1): 295-305.

[21] Wang Y, Cui Z J, Zhang X J, et al. Excitation of surface plasmon resonance on multiwalled carbon nanotube metasurfaces for pesticide sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 52082-52088.

[22] Nakai Y, Honda K, Yanagi K, et al. Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film[J]. Applied Physics Express, 2014, 7(2): 025103.

[23] 张泽亮, 齐鹏飞, 郭兰军, 等. 太赫兹超分辨近场成像方法研究综述[J]. 光学学报, 2023, 43(6): 0600001.

    Zhang Z L, Qi P F, Guo L J, et al. Review on super-resolution near-field terahertz imaging methods[J]. Acta Optica Sinica, 2023, 43(6): 0600001.

[24] Stavis S M, Fagan J A, Stopa M, et al. Nanoparticle manufacturing-heterogeneity through processes to products[J]. ACS Applied Nano Materials, 2018, 1(9): 4358-4385.

[25] Suzuki D, Ochiai Y, Kawano Y. Thermal device design for a carbon nanotube terahertz camera[J]. ACS Omega, 2018, 3(3): 3540-3547.

[26] Chiu K C, Falk A L, Ho P H, et al. Strong and broadly tunable plasmon resonances in thick films of aligned carbon nanotubes[J]. Nano Letters, 2017, 17(9): 5641-5645.

[27] Jintoku H, Sato T, Nakazumi T, et al. Formation of highly pure and patterned carbon nanotube films on a variety of substrates by a wet process based on light-induced dispersibility switching[J]. ACS Applied Materials & Interfaces, 2017, 9(36): 30805-30811.

[28] He X W, Fujimura N, Lloyd J M, et al. Carbon nanotube terahertz detector[J]. Nano Letters, 2014, 14(7): 3953-3958.

[29] Suzuki D, Oda S, Kawano Y. A flexible and wearable terahertz scanner[J]. Nature Photonics, 2016, 10(12): 809-813.

[30] Ahmad H, Suzuki D, Kawano Y. Strain-induced photo-thermoelectric terahertz detection[J]. AIP Advances, 2018, 8(11): 115002.

[31] LiK, SuzukiD, OchiaiY, et al. Sensitivity enhancement of photothermoelectric terahertz detectors with series combination between carbon nanotubes and metals[C]∥2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), September 9-14, 2018. Nagoya. New York: IEEE Press, 2018.

[32] Li K, Suzuki D, Kawano Y. Series photothermoelectric coupling between two composite materials for a freely attachable broadband imaging sheet[J]. Advanced Photonics Research, 2021, 2(3): 2000095.

[33] Sugahara T, Ekubaru Y, van Nong N, et al. Fabrication with semiconductor packaging technologies and characterization of a large-scale flexible thermoelectric module[J]. Advanced Materials Technologies, 2019, 4(2): 1800556.

[34] LiK, UtakiR, SunM L, et al. A highly-sensitive and highly-integrated flexible broadband imager with 3D printed π-shaped photo-thermoelectric pixel structures[C]∥2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), November 8-13, 2020, Buffalo, NY, USA. New York: IEEE Press, 2021.

[35] UtakiR, LiK, KawanoY. A stretchable wideband photo-thermoelectric wrap scanner sheet for wearable and noninvasive liquid quality monitoring[C]∥2020 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), November 8-13, 2020, Buffalo, NY, USA. New York: IEEE Press, 2021.

[36] Li K, Yuasa R, Utaki R, et al. Robot-assisted, source-camera-coupled multi-view broadband imagers for ubiquitous sensing platform[J]. Nature Communications, 2021, 12(1): 1-11.

[37] Li K, Araki T, Utaki R, et al. Stretchable broadband photo-sensor sheets for nonsampling, source-free, and label-free chemical monitoring by simple deformable wrapping[J]. Science Advances, 2022, 8(19): eabm4349.

[38] Zubair A, Wang X, Mirri F, et al. Carbon nanotube woven textile photodetector[J]. Physical Review Materials, 2018, 2(1): 015201.

[39] Suzuki D, Li K, Ishibashi K, et al. A terahertz video camera patch sheet with an adjustable design based on self-aligned, 2D, suspended sensor array patterning[J]. Advanced Functional Materials, 2021, 31(14): 2008931.

[40] SakaiD, LiK, KawanoY. All-printable flexible photo-thermoelectric broadband terahertz and millimeter-waves imagers with carbon nanotubes[C]∥2022 Asia-Pacific Microwave Conference (APMC), November 29-December 2, 2022, Yokohama, Japan. New York: IEEE Press, 2023: 955-957.

[41] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[42] Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200.

[43] Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(30): 10451-10453.

[44] Lee C G, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.

[45] Liu N, Tian H, Schwartz G, et al. Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene[J]. Nano Letters, 2014, 14(7): 3702-3708.

[46] Banerjee I, Faris T, Stoeva Z, et al. Graphene films printable on flexible substrates for sensor applications[J]. 2D Materials, 2016, 4(1): 015036.

[47] Wen J G, Niu Y Y, Wang P F, et al. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity[J]. Carbon, 2019, 153: 274-284.

[48] Jiang X, Zhao J J, Li Y L, et al. Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction[J]. Advanced Functional Materials, 2013, 23(47): 5846-5853.

[49] Pettes M T, Ji H X, Ruoff R S, et al. Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite[J]. Nano Letters, 2012, 12(6): 2959-2964.

[50] Liu Y, Yin J, Wang P F, et al. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36304-36311.

[51] Zhang L S, Su X H, Sun Z, et al. Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films[J]. Applied Surface Science, 2015, 351: 693-696.

[52] Pisoni A, Jaćimović J, Barišić O S, et al. Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3[J]. The Journal of Physical Chemistry Letters, 2014, 5(14): 2488-2492.

[53] Li Y F, Zhang Y T, Chen Z L, et al. Self-powered, flexible, and ultrabroadband ultraviolet-terahertz photodetector based on a laser-reduced graphene oxide/CsPbBr3 composite[J]. Photonics Research, 2020, 8(8): 1301-1308.

[54] Wright D A. Thermoelectric properties of bismuth telluride and its alloys[J]. Nature, 1958, 181(4612): 834.

[55] Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature, 2001, 413(6856): 597-602.

[56] Kumar M, Rani S, Singh Y, et al. Tin-selenide as a futuristic material: properties and applications[J]. RSC Advances, 2021, 11(12): 6477-6503.

[57] Deng W J, Wang C W, Dai M J, et al. Ultra-broadband SnSe-based photothermoelectric detector for mid-infrared gas spectroscopy[J]. Applied Physics Letters, 2022, 121(11): 112105.

[58] Zhong Y J, Zhang L, Linseis V, et al. High-quality textured SnSe thin films for self-powered, rapid-response photothermoelectric application[J]. Nano Energy, 2020, 72: 104742.

[59] Yao J D, Zheng Z Q, Yang G W. All-layered 2D optoelectronics: a high-performance UV-vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes[J]. Advanced Functional Materials, 2017, 27(33): 1701823.

[60] Zhou Q Q, Lu D L, Tang H, et al. Self-powered ultra-broadband and flexible photodetectors based on the bismuth films by vapor deposition[J]. ACS Applied Electronic Materials, 2020, 2(5): 1254-1262.

[61] Niu Y Y, Wang Y X, Wu W D, et al. Ultrabroadband, fast, and flexible photodetector based on HfTe5 crystal[J]. Advanced Optical Materials, 2020, 8(20): 2000833.

[62] Qiao H, Yuan J, Xu Z Q, et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano, 2015, 9(2): 1886-1894.

[63] Yao J D, Shao J M, Wang Y X, et al. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments[J]. Nanoscale, 2015, 7(29): 12535-12541.

[64] Liu H, Liu Y J, Dong S C, et al. Photothermoelectric SnTe photodetector with broad spectral response and high on/off ratio[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49830-49839.

[65] Gu Y Z, Yao X, Geng H X, et al. Large-area, flexible, and dual-source Co-evaporated Cs3Cu2I5 nanolayer to construct ultra-broadband photothermoelectric detector from visible to terahertz[J]. ACS Applied Electronic Materials, 2022, 4(2): 663-671.

[66] Li Y F, Zhang Y T, Li T T, et al. Ultrabroadband, ultraviolet to terahertz, and high sensitivity CH3NH3PbI3 perovskite photodetectors[J]. Nano Letters, 2020, 20(8): 5646-5654.

[67] Li Y F, Zhang Y T, Li T T, et al. A fast response, self-powered and room temperature near infrared-terahertz photodetector based on a MAPbI3/PEDOT: PSS composite[J]. Journal of Materials Chemistry C, 2020, 8(35): 12148-12154.

[68] Park J, Hwang J C, Kim G G, et al. Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials[J]. InfoMat, 2020, 2(1): 33-56.

[69] Island J O, Molina-Mendoza A J, Barawi M, et al. Electronics and optoelectronics of quasi-1D layered transition metal trichalcogenides[J]. 2D Materials, 2017, 4(2): 022003.

[70] Island J O, Buscema M, Barawi M, et al. Ultrahigh photoresponse of few-layer TiS3 nanoribbon transistors[J]. Advanced Optical Materials, 2014, 2(7): 641-645.

[71] Xiong W W, Chen J Q, Wu X C, et al. Visible light detectors based on individual ZrSe3 and HfSe3 nanobelts[J]. Journal of Materials Chemistry C, 2015, 3(9): 1929-1934.

[72] Tao Y R, Wu X C, Xiong W W. Flexible visible-light photodetectors with broad photoresponse based on ZrS3 nanobelt films[J]. Small, 2014, 10(23): 4905-4911.

[73] Xiong W W, Chen J Q, Wu X C, et al. Individual HfS3 nanobelt for field-effect transistor and high performance visible-light detector[J]. Journal of Materials Chemistry C, 2014, 2(35): 7392-7395.

[74] Harris K J, Bugnet M, Naguib M, et al. Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13713-13720.

[75] Cheng H G, Liu Q X, Han S P, et al. Highly efficient photothermal conversion of Ti3C2Tx/ionic liquid gel pen ink for smoothly writing ultrasensitive, wide-range detecting, and flexible thermal sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(33): 37637-37646.

[76] Lin H, Wang X G, Yu L D, et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 2017, 17(1): 384-391.

[77] Choy C L. Thermal conductivity of polymers[J]. Polymer, 1977, 18(10): 984-1004.

[78] Poehler T O, Katz H E. Prospects for polymer-based thermoelectrics: state of the art and theoretical analysis[J]. Energy & Environmental Science, 2012, 5(8): 8110-8115.

[79] Bubnova O, Crispin X. Towards polymer-based organic thermoelectric generators[J]. Energy & Environmental Science, 2012, 5(11): 9345-9362.

[80] 高杰, 苗蕾, 张斌, 等. 柔性复合热电材料及器件的研究进展[J]. 功能高分子学报, 2017, 30(2): 142-167.

    Gao J, Miao L, Zhang B, et al. Advances in flexible thermoelectric materials and devices[J]. Journal of Functional Polymers, 2017, 30(2): 142-167.

[81] Kim G H, Shao L, Zhang K, et al. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency[J]. Nature Materials, 2013, 12(8): 719-723.

[82] Sun Y M, Sheng P, Di C A, et al. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1, 1, 2, 2-ethenetetrathiolate)S[J]. Advanced Materials, 2012, 24(7): 932-937.

[83] Wang X, Liu Q C, Wu S Y, et al. Multilayer polypyrrole nanosheets with self-organized surface structures for flexible and efficient solar-thermal energy conversion[J]. Advanced Materials, 2019, 31(19): 1807716.

[84] Baker C O, Huang X W, Nelson W, et al. Polyaniline nanofibers: broadening applications for conducting polymers[J]. Chemical Society Reviews, 2017, 46(5): 1510-1525.

[85] Liu S Q, Kong J H, Chen H M, et al. Interfacial energy barrier tuning for enhanced thermoelectric performance of PEDOT nanowire/SWNT/PEDOT: PSS ternary composites[J]. ACS Applied Energy Materials, 2019, 2(12): 8843-8850.

[86] Rahimzadeh Z, Naghib S M, Zare Y, et al. An overview on the synthesis and recent applications of conducting poly(3, 4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine[J]. Journal of Materials Science, 2020, 55(18): 7575-7611.

[87] Shi Q W, Sun J Q, Hou C Y, et al. Advanced functional fiber and smart textile[J]. Advanced Fiber Materials, 2019, 1(1): 3-31.

[88] Wang Y T, Yang L, Shi X L, et al. Flexible thermoelectric materials and generators: challenges and innovations[J]. Advanced Materials, 2019, 31(29): 1807916.

[89] Zhang J Z, Seyedin S, Qin S, et al. Fast and scalable wet-spinning of highly conductive PEDOT: PSS fibers enables versatile applications[J]. Journal of Materials Chemistry A, 2019, 7(11): 6401-6410.

[90] Feng K, Xu L, Xiong Y, et al. PEDOT: PSS and Ni-based thermoelectric generator for solar thermal energy conversion[J]. Journal of Materials Chemistry C, 2020, 8(11): 3914-3922.

[91] Zhang X F, Li T T, Ren H T, et al. Dual-shell photothermoelectric textile based on a PPy photothermal layer for solar thermal energy harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55072-55082.

[92] Zhang X F, Shiu B, Li T T, et al. Synergistic work of photo-thermoelectric and hydroelectric effects of hierarchical structure photo-thermoelectric textile for solar energy harvesting and solar steam generation simultaneously[J]. Chemical Engineering Journal, 2021, 426: 131923.

[93] Xu H H, Li J, Leung B H K, et al. A high-sensitivity near-infrared phototransistor based on an organic bulk heterojunction[J]. Nanoscale, 2013, 5(23): 11850-11855.

[94] Ji Z, Zhao W R, Xiang L Y, et al. Hierarchical heterojunction enhanced photodoping of polymeric semiconductor for photodetection and photothermoelectric applications[J]. ACS Materials Letters, 2022, 4(5): 815-822.

[95] Wang C L, Dong H L, Hu W P, et al. Semiconducting π- conjugated systems in field-effect transistors: a material odyssey of organic electronics[J]. Chemical Reviews, 2012, 112(4): 2208-2267.

[96] Mei J G, Diao Y, Appleton A L, et al. Integrated materials design of organic semiconductors for field-effect transistors[J]. Journal of the American Chemical Society, 2013, 135(18): 6724-6746.

[97] Tsao H N, Cho D M, Park I, et al. Ultrahigh mobility in polymer field-effect transistors by design[J]. Journal of the American Chemical Society, 2011, 133(8): 2605-2612.

[98] Lee B H, Bazan G C, Heeger A J. Doping-induced carrier density modulation in polymer field-effect transistors[J]. Advanced Materials, 2016, 28(1): 57-62.

[99] Li W S, Guo Y T, Shi J J, et al. Solution-processable neutral green electrochromic polymer containing thieno[3, 2-b]thiophene derivative as unconventional donor units[J]. Macromolecules, 2016, 49(19): 7211-7219.

[100] Hasegawa T, Ashizawa M, Hayashi Y, et al. P- and n-channel photothermoelectric conversion based on ultralong near-infrared wavelengths absorbing polymers[J]. ACS Applied Polymer Materials, 2019, 1(3): 542-551.

[101] Liu Y F, Lan X Q, Xu J K, et al. Organic/inorganic hybrid boosting energy harvesting based on the photothermoelectric effect[J]. ACS Applied Materials & Interfaces, 2021, 13(36): 43155-43162.

[102] Huang D Z, Zou Y, Jiao F, et al. Interface-located photothermoelectric effect of organic thermoelectric materials in enabling NIR detection[J]. ACS Applied Materials & Interfaces, 2015, 7(17): 8968-8973.

[103] Jiang R B, Cheng S, Shao L, et al. Mass-based photothermal comparison among gold nanocrystals, PbS nanocrystals, organic dyes, and carbon black[J]. The Journal of Physical Chemistry C, 2013, 117(17): 8909-8915.

[104] Xin C H, Hu Z L, Fang Z Q, et al. Flexible and wearable plasmonic-enabled organic/inorganic hybrid photothermoelectric generators[J]. Materials Today Energy, 2021, 22: 100859.

[105] Stokes P, Liu L W, Zou J H, et al. Photoresponse in large area multiwalled carbon nanotube/polymer nanocomposite films[J]. Applied Physics Letters, 2009, 94(4): 042110.

[106] Kuriakose M, Depriester M, Chan Yu King R, et al. Photothermoelectric effect as a means for thermal characterization of nanocomposites based on intrinsically conducting polymers and carbon nanotubes[J]. Journal of Applied Physics, 2013, 113(4): 044502.

[107] Zhang M Y, Yeow J T W. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite[J]. Carbon, 2020, 156: 339-345.

[108] Wang J Q, Xie Z M, Liu J A, et al. Design of room-temperature infrared photothermoelectric detectors based on CNT/PEDOT: PSS composites[J]. Journal of Materials Chemistry C, 2022, 10(40): 15105-15113.

[109] Jin X Z, Li H, Wang Y, et al. Ultraflexible PEDOT: PSS/helical carbon nanotubes film for all-in-one photothermoelectric conversion[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 27083-27095.

[110] Xie Z M, Wang J Q, Yeow J T W. Doped polyaniline/graphene composites for photothermoelectric detectors[J]. ACS Applied Nano Materials, 2022, 5(6): 7967-7973.

[111] Zare E N, Makvandi P, Ashtari B, et al. Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review[J]. Journal of Medicinal Chemistry, 2020, 63(1): 1-22.

[112] Xie Z M, Wang J Q, Yeow J T W. Flexible multi-element photothermoelectric detectors based on spray-coated graphene/polyethylenimine composites for nondestructive testing[J]. ACS Applied Materials & Interfaces, 2023, 15(4): 5921-5930.

[113] Kim H J, An S J, Kim J Y, et al. Polybenzimidazoles for high temperature fuel cell applications[J]. Macromolecular Rapid Communications, 2004, 25(15): 1410-1413.

[114] Hazarika M, Jana T. Proton exchange membrane developed from novel blends of polybenzimidazole and poly(vinyl-1, 2, 4-triazole)[J]. ACS Applied Materials & Interfaces, 2012, 4(10): 5256-5265.

[115] Park J, Jeong Y G. Effects of chain orientation and packing on the photoluminescence and photothermal properties of polybenzimidazole fibers with meta-linkage[J]. Macromolecules, 2015, 48(24): 8823-8830.

[116] Park J, Jeong Y G. Thermoelectric and photothermoelectric properties of nanocomposite films based on polybenzimidazole and carbon nanotubes[J]. ACS Applied Electronic Materials, 2022, 4(1): 386-393.

[117] Kojima H, Abe R, Fujiwara F, et al. Universality of the giant Seebeck effect in organic small molecules[J]. Materials Chemistry Frontiers, 2018, 2(7): 1276-1283.

[118] Wang L M, Zhang Z M, Geng L X, et al. Solution-printable fullerene/TiS2 organic/inorganic hybrids for high-performance flexible n-type thermoelectrics[J]. Energy & Environmental Science, 2018, 11(5): 1307-1317.

[119] Wang Y Z, Lu Z X, Hu Q J, et al. Mass-produced metallic multiwalled carbon nanotube hybrids exhibiting high N-type thermoelectric performances[J]. Journal of Materials Chemistry A, 2021, 9(6): 3341-3352.

[120] 杜鹏飞, 叶伟, 萧生, 等. 锑基Ⅱ类超晶格InAs/InAsSb红外探测器的研究进展[J]. 激光与光电子学进展, 2022, 59(17): 1700004.

    Du P F, Ye W, Xiao S, et al. Research progress of antimony-based type-Ⅱ superlattice InAs/InAsSb infrared detector[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1700004.

[121] Chirilă A, Reinhard P, Pianezzi F, et al. Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells[J]. Nature Materials, 2013, 12(12): 1107-1111.

[122] Takahashi R, Yukita W, Sasatani T, et al. Twin meander coil[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2021, 5(4): 1-21.

刘睿丰, 陈猛, 王迎新, 赵自然. 柔性光热电探测器研究进展[J]. 中国激光, 2023, 50(23): 2300001. Ruifeng Liu, Meng Chen, Yingxin Wang, Ziran Zhao. Research Progress of Flexible Photothermoelectric Detectors[J]. Chinese Journal of Lasers, 2023, 50(23): 2300001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!