光学 精密工程, 2020, 28 (5): 1029, 网络出版: 2020-11-06   

应用独立分量分析的激光测风雷达湍流频谱分解

Turbulence spectrum separation of wind lidar using independent component analysis
作者单位
北京航空航天大学 仪器科学与光电工程学院, 北京 100191
摘要
针对大型风力发电机机组中常见的脉动湍流、风机尾流与涡流等湍流信号, 研究了利用自然梯度下降的独立分量分析方法的湍流频谱分离效果, 以区分中心风速与湍流信号, 提高风机机组的综合工作效率。首先分析了风机组中常见湍流信号的后向散射与频谱分布特点, 然后依据这些特点设计了对应的独立分量分析模型。在仿真结果符合要求的基础上, 进行了双目激光雷达天线的风速采集与实际分离效果检测。实验结果表明, 在大气折射率结构常数C2n≤10-14同时广义大气常数α≥4的通常情况下, 利用双目信号能够分离出一个湍流中心和一个中心风速。对1 s内两个谱峰的波动范围进行统计, 获得(2.59±0.05) MHz的中心风速以及(1.22±0.19) MHz的湍流中心估计, 且二者的平均信噪比分别为25.93 dB和31.01 dB, 能够在获得稳定的中心风速估计的同时得到一个较为稳定的湍流中心估计。
Abstract
Research on spectrum separation in a turbulent environment using an Independent Component Analysis (ICA) algorithm of natural gradient descent is carried out to investigate the turbulence generated by heat or blades in giant wind turbines. When the main wind is distinguished from a mixed signal with turbulence, the efficiency of wind turbines in a wind field increases. Firstly, the backscattering characteristics and spectrum distribution of turbulence signals are analyzed. Then, the ICA model is designed according to these characteristics. As the simulation results meeting the requirements, a wind speed detection of outdoor binocular lidar antenna and the wind spectrum separation effect of the detection are carried out. The results show that under the condition with refractive index structure constant C2n≤10-14 and generalized atmospheric constant α≥4, the turbulence center and main wind speed can be separated using binocular signals. Statistical analysis of the fluctuation range of the two peaks in 1 s shows the estimated central wind speed of (2.59±0.05) MHz and estimated turbulence center of (1.22±0.19) MHz. The average signal-to-noise ratio of the two peaks is 25.93 dB and 31.01 dB, respectively, which meet the requirements for obtaining stable center wind speed and relatively stable turbulence center estimates.
参考文献

[1] 邵建辉. 复杂山地风电场机位湍流分析研究 [J]. 内蒙古电力技术, 2019, 37(2): 14-18.

    SHAO J H. Analysis and research of turbulence intensity of wind turbine site in complex mountain wind farm [J]. Inner Mongolia Electric Power, 2019, 37(2): 14-18.(in Chinese)

[2] 于晓庆, 吴松华. 新疆地区陆上风电场风机尾流特征分析 [J]. 大气与环境光学学报, 2019, 14(4): 250-258.

    YU X Q, WU S H. Analysis of characteristics of onshore turbine wake in Xinjiang [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(4): 250-258.(in Chinese)

[3] BELMONTE A, RYE B J. Heterodyne lidar returns in the turbulent atmosphere: performance evaluation of simulated systems [J].Applied Optics, 2000, 39(15): 2401-2411.

[4] SMALIKHO I N, BANAKH V A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer [J].Atmospheric Measurement Techniques Discussions, 2017, 10(11): 4191-4208.

[5] MATSUO T, SUN G H, KIDERA S, et al.. Acceleration for wind velocity vector estimation by neural network for single Doppler LIDAR [J]. 2016 International Symposium on Antennas and Propagation (ISAP), 2016: 444-445.

[6] 徐春凤, 倪小龙.激光大气湍流传输中的光强闪烁特性 [J]. 光学 精密工程, 2016, 24(10): 186-189

    XU CH F, NI X L. Scintillation in turbulent atomsphere laser communication [J]. Opt. Precision Eng., 2016, 24(10): 186-189. (in Chinese)

[7] ZHAI X C, WU S H, LIU B Y. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence under different surface roughness [J].Optics Express, 2017, 25(12): A515-A529.

[8] 李正汉, 李新阳. 冻结大气湍流下自适应光学系统的预测校正性能 [J]. 光学 精密工程, 2018, 26(3): 548-555.

    LI ZH H, LI X Y. Performance of predictive correction for adaptive optics systems with frozen flow turbulence [J]. Opt. Precision Eng., 2018, 26(3): 548-555.(in Chinese)

[9] 吴晓庆, 黄印博, 梅海平, 等. 近地面层大气非Kolmogorov湍流特征参数测量 [J]. 光学学报, 2014, 34(6): 9-14.

    WU X Q, HUANG Y B, MEI H P, et al.. Measurement of non-Kolmogorov turbulence characteristic parameter in atmospheric surface layer [J]. Acta Optica Sinica, 2014, 34(6): 9-14.(in Chinese)

[10] 卫沛锋, 林旭东, 王亮, 等. 大气相干长度的瞬时测量 [J]. 光学 精密工程, 2016, 24(8): 1840-1845.

    WEI P F, LIN X D, WANG L, et al.. Simultaneous measurement of atmospheric coherence length [J]. Opt. Precision Eng., 2016, 24(8): 1840-1845.(in Chinese)

[11] 夏建明, 郑恒. 基于独立分量分析的外辐射源雷达主瓣同邻频干扰抑制研究 [J]. 信息技术与信息化, 2019(7): 156-159.

    XIA J M, ZHENG H.Recearch of mainlobe Co-channel interference suppression based on independent component analysis in passive radar [J]. Information Technology and Informatization, 2019(7): 156-159.(in Chinese)

[12] 师晨旭.自然梯度盲信号分离算法的研究 [D].焦作: 河南理工大学, 2017.

    SHI CH X. Blind Signal Separation Algorithm Based on Natural Gradient [D]. Jiaozuo: Henan Polytechnic University, 2017. (in Chinese)

[13] 方明, 李礼, 蔡天祥, 等. 一种可用于预白化类空时自适应处理中的阵元误差校正算法 [J]. 上海航天, 2018, 35(6): 79-86.

    FANG M, LI L, CAI T X, et al.. Array error calibration algorithm pre-whitened space-time adaptive processing [J]. Aerospace Shanghai, 2018, 35(6): 79-86.(in Chinese)

李一越, 胡姝玲. 应用独立分量分析的激光测风雷达湍流频谱分解[J]. 光学 精密工程, 2020, 28(5): 1029. LI Yi-yue, HU Shu-ling. Turbulence spectrum separation of wind lidar using independent component analysis[J]. Optics and Precision Engineering, 2020, 28(5): 1029.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!