光通信技术, 2022, 46 (5): 64, 网络出版: 2023-01-28   

基于模分与波分混合复用的直接检测光纤传输系统研究

Research on direct detection fiber transmission system based on hybrid multiplexing of mode division and wavelength division
作者单位
1 湖南工业大学 计算机学院, 湖南 株洲 412007
2 湖南工业大学 研究生院, 湖南 株洲 412007
3 湖南汽车工程职业学院 机电工程学院, 湖南 株洲 412001
摘要
光纤中线性偏振模式的选择是影响模分复用系统传输质量的关键因素。为此首先设计了基于模分与波分混合复用的直接检测光纤传输系统;其次, 基于光纤中线性偏振模式理论, 利用Optisystem15.0软件仿真研究LP01、LP11、LP02、LP12、LP215个模式在该光纤传输系统中的传输特性;然后, 将LP01、LP11、LP02、LP12四模式复用, 仿真得到了折射率渐变多模光纤纤芯半径在19~25 μm范围内变化时, 各通道Q因子均在7以上的纤芯半径最优化值为21~22 μm, 且此最优值不随传输距离而变化;最后, 在八通道混合复用系统中采用直接检测方式实现了误码率在10-9以下的2.0 km短距离传输。
Abstract
The choice of linear polarization mode in optical fiber is a key factor affecting transmission quality of mode division multiplexing system. Firstly, a direct detection optical fiber transmission system based on hybrid multiplexing of mode division and wavelength division is designed. Secondly, based on the theory of linear polarization mode in fiber, the transmission characteristics of LP01, LP11, LP02, LP12 and LP21 five modes in the optical fiber transmission system are simulated by Optisystem15.0 software. Then, four modes of LP01, LP11, LP02 and LP12 are multiplexed, and the simulation results show that when the core radius of graded-index multimode fiber changes in the range of 19~25 μm, the optimal core radius for each channel with Q factor above seven is 21~22 μm, and the optimal value does not change with the transmission distance. Finally, in the eight-channel hybrid multiplexing system, the direct detection method is used to realize the short distance transmission with bit error rate below 10-9 at 2.0 km.
参考文献

[1] RICHARDSON D J, FINI J M, NELSON L E. Space-division multiplexing in optical fibres[J]. Nature photonics, 2013, 7(5): 354-362.

[2] LI G F, BAI N, ZHAO N B, et al. Space-division multiplexing: the next frontier in optical communication[J]. Advances in Optics and Photonics, 2014, 6(4): 413-487.

[3] SU Y, HE Y, CHEN H, et al. Perspective on mode-division multiplexing[J]. Applied Physics Letters, 2021, 118(20): 200502-1-200502-9.

[4] KOEBELE C, SALSI M, MILORD L, et al. 40km transmission of five mode division multiplexed data streams at 100Gb/s with low MIMO-DSP complexity[C]//IEEE. Proceedings of European Conference and Exposition on Optical Communications. Geneva: IEEE, 2011: 1-3.

[5] BAI N, IP E, HUANG Y K, et al. Mode-division multiplexed transmission with inline few-mode fiber amplifier[J]. Optics express, 2012, 20(3): 2668-2680.

[6] SIEIFFER V, LENONI P, JUNG Y, et al. 20×960-Gb/s Space-division-multiplexed 32QAM transmission over 60 km few-mode fiber[J]. Optics express, 2014, 22(1): 749-755.

[7] RANDEL S, RYF R, SIERRA A, et al. 6×56Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization[J]. Optics Express, 2011, 19(17): 16697-16707.

[8] RYF R, FONTAINE N K, CHEN H S, et al. 72-Tb/s transmission over 179-km all-fiber 6-mode span with two cladding pumped in-line amplifiers[C]//IEEE. 2015 European Conference on Optical Communication (ECOC). Valencia. Spain: IEEE, 2015: 1-3.

[9] CHEN H S, RYF R, FONTAINE N K, et al. High spectral efficiency mode-multiplexed transmission over 87-km 10-mode fiber[C]//IEEE. Proceedings of 2016 Optical Fiber Communications Conference and Exhibition (OFC). Anaheim: IEEE, 2016: 1-3.

[10] FRANZ B, B?譈LOW H. Mode group division multiplexing in graded-index multimode fibers[J]. Bell Labs Technical Journal, 2013, 18(3): 153-172.

[11] SILLARD P, MOLIN D, BIGOT-ASTRUC M, et al. 50 μm multimode fibers for mode division multiplexing[J]. Journal of lightwave technology, 2016, 34(8): 1672-1677.

[12] SIMONNEAU C, D'AMATO A, JIAN PU, et al. 4×50 Gb/s transmission over 4.4 km of multimode OM2 fiber with direct detection using mode group multiplexing[C]//IEEE. Proccedings of Optical Fiber Communication Conference. Anaheim: IEEE, 2016:1-3.

[13] LENGLl?魪 K, INSOU X, JIAN P, et al. 4×10 Gbit/s bidirectional transmission over 2 km of conventional graded-index OM1 multimode fiber using mode group division multiplexing[J]. Optics express, 2016, 24(25): 28594-28605.

[14] LI J, WU Z, GE D, et al. Weakly-coupled mode division multiplexing over conventional multi-mode fiber with intensity modulation and direct detection[J]. Frontiers of Optoelectronics, 2019, 12(1): 31-40.

[15] LI J, HU J, ZOU D, et al. Terabit mode division multiplexing discrete multitone signal transmission over OM2 multimode fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(4): 1-8.

[16] REN F, LI J H, WU Z Y, et al. Three-mode mode-division-multiplexing passive optical network over 12-km low mode-crosstalk FMF using all-fiber mode MUX/DEMUX[J]. Optics Communications, 2017, 383: 525-530.

[17] GASULLA I, KAHN J M. Performance of direct-detection mode-group-division multiplexing using fused fiber couplers[J]. Journal of Lightwave Technology, 2015, 33(9): 1748-1760.

[18] GRUNER-NIELSEN L, MATHEW N M, Nymann M H, et al. Mode division multiplexing on standard 50/125 μm multi mode fiber using photonic lanterns[C]//IEEE. Proceedings of 2021 Optical Fiber Communications Conference and Exhibition (OFC). San Francisco: IEEE, 2021: 1-3.

刘丰年, 翁艳彬, 刘志, 刘春梅, 果鑫, 黄鑫, 张威. 基于模分与波分混合复用的直接检测光纤传输系统研究[J]. 光通信技术, 2022, 46(5): 64. LIU Fengnian, WENG Yanbin, LIU Zhi, LIU Chunmei, GUO Xin, HUANG Xin, ZHANG Wei. Research on direct detection fiber transmission system based on hybrid multiplexing of mode division and wavelength division[J]. Optical Communication Technology, 2022, 46(5): 64.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!