中国激光, 2024, 51 (1): 0106001, 网络出版: 2024-01-19  

掺镱大模场光子晶体光纤研究进展(特邀)创刊五十周年特邀

Research Progress on Yb-Doped Large Mode Field Photonic Crystal Fibers (Invited)
作者单位
中国科学院上海光学精密机械研究所,上海 201800
摘要
掺镱大模场光子晶体光纤在高峰值功率超快激光放大器中有着重要的应用价值,其研究得到了广泛关注。首先简要介绍了国内外掺镱大模场光子晶体光纤的研究进展,阐述了掺镱大模场光子晶体光纤的基本设计思路,对比说明了保偏型掺镱光子晶体光纤的设计制备方法。重点介绍了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤方面的研究进展。包括掺镱大模场光子晶体光纤的纤芯折射率大小和均匀性控制、光子晶体光纤微结构控制等关键技术。采用自主研制的四种芯径为40~100 μm的掺镱大模场光子晶体光纤开展了皮秒脉冲激光放大实验。利用40 μm芯径的保偏掺镱光子晶体光纤实现了平均功率为100 W、光束质量因子(M2)小于1.4的稳定输出,偏振消光比为12 dB。利用100 μm芯径的保偏掺镱大模场光子晶体光纤实现了M2小于1.5的高光束质量脉冲放大。上述研究为掺镱大模场光子晶体光纤的国产化应用奠定了基础。
Abstract
Significance

Ytterbium-doped large-mode-area photonic crystal fibers (LMA PCFs) have attracted extensive attention owing to their important applications in high-peak-power ultrafast laser amplifiers. Fiber lasers are widely used in advanced manufacturing, medicine, national defense, and scientific research owing to their compact structure, high conversion efficiency, high reliability, and low cost. However, with the development of fiber lasers, particularly the development and application of ultrafast lasers in the field of fine processing in recent years, higher requirements have been placed on the output power and beam quality of fiber lasers. Currently, the output power of internationally commercialized fiber lasers has reached 100 kW. IPG Photonics Corporation uses a double-clad fiber with a core diameter of 30 μm to achieve a 10 kW single-mode single-fiber laser output. However, owing to the limitations of the physical mechanisms, such as nonlinear effects, optical damage, and thermal damage, it is very difficult to further increase the output power of a single laser module. The nonlinear effect of the optical fiber is related to the mode field area of ​​the optical fiber. The larger the mode field area, the weaker the nonlinear effect of the optical fiber, and the higher the threshold of the nonlinear effect. Therefore, large-mode field fibers are one of the most direct and effective ways of overcoming nonlinear effects and fiber laser damage to further increase laser power. However, an increase in the core diameter of large-mode field fibers inevitably causes competition among multiple transverse modes, degrading the beam quality of the laser.

Consequently, various fiber structure designs have been proposed to maintain a satisfactory beam quality with large core diameters, such as rod-type photonic crystal fibers, photonic bandgap fibers, leakage channel fibers, large-pitch fibers, chirally coupled-core fibers, and other microstructure fibers. Among them, the Yb-doped PCF has the most classic architecture, with an ordered array of microscopic air holes. These microscopic air holes favor convenient regulation of the effective refractive index of the cladding. Nevertheless, it is difficult to manipulate the refractive index so that it is close to that of pure silica glass cladding and maintain good uniformity in Yb-doped silica core glass. The commercial method of modified chemical vapor deposition (MCVD) combined with solution doping has some limitations in terms of the core size, refractive index uniformity in the radial and axial directions, and ultralow numerical aperture. Other non-MCVD fabrication technologies have also been developed and reported, including direct nanoparticle deposition (DND), reactive powder sintering of silica (REPUSIL), and sol-gel methods. Heraeus Quarzglas made great progress in the preparation of Yb3+/Al3+/F--co-doped silica bulk glasses with the F--doping-induced refractive index (RI) reduction being evident.

The sol-gel technique is a well-known method for producing centimeter-sized long glassy silica rods. Our group has committed to the preparation of large Yb3+-doped silica glass rods with a low refractive index and high optical homogeneity using a modified sol-gel method combined with high-temperature sintering. The sol-gel process ensures dopant mixing in the solution and consequently high doping uniformity, and high-temperature powder sintering allows the preparation of large-sized bulk glass. Fluorine incorporation during the sol-gel process is used to compensate for the increased refractive index caused by ytterbium and aluminum co-doping, and phosphorus is used to suppress the formation of Yb2+ and photodarkening. The sol-gel method combined with high-temperature sintering provides a cost-effective method for fabricating the core glass of a Yb-doped LMA PCF.

Progress

In this paper, we briefly introduce the progress of research on ytterbium-doped LMA PCF at home and abroad, as well as the design of ytterbium-doped LMA PCF. The effects of thermal history on the refractive index of the Yb/Al/P/F co-doped silica glass and the beam quality of the PCF are demonstrated. For comparison, the design and preparation methods of the polarization-maintaining ytterbium-doped PCF are presented. This paper focuses on the progress of research on Yb-doped LMA PCF in the past ten years at the Shanghai Institute of Optics and Fine Mechanics (SIOM) (Table 1 and Fig. 20). This includes accurate control of the refractive index value, homogeneity of the fiber core glass, and structure of the PCF. The output laser beam quality is significantly improved owing to the optimization of the Yb-doped core-glass rod.

Conclusions and Prospects

With the rapid development of the domestic ultrafast laser processing industry, the demand for domestically produced Yb-doped LMA PCF by domestic ultrafast laser companies has increased. This paper summarizes the progress of ytterbium-doped large-mode-field photonic crystal fibers in SIOM over the past decade. Ytterbium-doped large-mode field photonic crystal fibers with core diameters of 40 μm, 50 μm, 75 μm, and 100 μm were prepared. Using a 40 μm /200 μm polarization-maintaining ytterbium-doped photonic crystal fiber, we independently designed and prepared an all-fiber amplification module, and achieved picosecond pulse amplification with an average power exceeding one hundred watts and high beam quality. The beam quality factor M2 was less than 1.5, the polarization degree was greater than 12 dB, and the power fluctuation was less than 1.3% in 2 h under a 100 W amplification power operation. Using ytterbium-doped LMA PCF with a core diameter of 100 μm as the gain fiber, picosecond pulse amplification with a beam quality factor M2<1.3 and polarization degree greater than 95% was achieved. In the future, the performance of LMA PCFs should be further optimized to meet the requirements for high-average-power ultrafast fiber lasers.

1 引言

近年来,掺镱大模场石英光纤由于在高功率、大能量及高峰值功率脉冲激光及放大器方面的重要应用而得到了广泛的研究1-2。其中,脉冲激光器具有高能量/高峰值功率以及优越的时域特性,在精细加工、生物医疗、科研探索等领域中具有很好的应用前景。无论是连续光纤激光还是脉冲光纤激光,限制激光功率提升的主要因素是非线性效应2-3和模式不稳定效应4-5。抑制非线性效应、提高激光功率的主要解决途径是使用大模场光纤代替传统的小芯径双包层光纤。获取大模场的有效措施是增大纤芯直径,但这会影响光束质量。为了解决大模场和光束质量的矛盾,需要优化光纤的结构设计。为此,国际上相继推出了折射率导引型光子晶体光纤(PCF)、带隙型光子晶体光纤、手性耦合光纤、多坑道微结构光纤等6-7

掺镱光子晶体光纤自2000年问世以来,英国巴斯大学、德国耶拿大学、丹麦NKT Photonics等国外研究机构和公司对大模场光子晶体光纤的设计、制备以及应用等关键技术进行了大量的研究8-9。目前掺镱大模场光子晶体光纤已能够在多种结构中实现了芯径大于100 μm的单模激光输出10-12。实现掺镱大模场光子晶体光纤产品化的丹麦NKT Photonics公司在2023年将在售85 μm芯径的掺镱光子晶体光纤的建议使用平均功率提升到250 W,4000 h的考核证明其光致暗化性能也有了很大提升13-14

国内掺镱大模场光子晶体光纤方面的研究起步较晚。燕山大学、武汉烽火通信科技股份有限公司、华中科技大学和中国科学院上海光学精密机械研究所等单位自2010年前后陆续开展了掺镱大模场光子晶体光纤的设计和制备研究。2009年,华中科技大学陈伟等15采用改进化学气相沉积(MCVD)法制备了Yb3+掺杂芯棒,拉制了纤芯数值孔径(NA)为0.06、有效模场面积约为1465.7 μm2的掺Yb3+光子晶体光纤。2012年,华中科技大学陈瑰等16采用MCVD法结合气相液相混合掺杂技术,制备了大芯径的Yb3+掺杂石英光纤预制棒,并以此为纤芯制备了芯径约为90 μm的光子晶体光纤,模场面积约为1330 μm2,纤芯NA为0.065,首次实现了国产Yb3+掺杂石英光子晶体光纤的高功率激光输出,在1 m长的光纤中获得了102 W连续激光(CW),斜率效率为76%,但该光纤没有获得单模激光。2013年,燕山大学刘建涛等17采用粉末烧结技术制备了Yb3+掺杂的大模场光子晶体光纤,光纤的模场直径为26 μm,模场面积为550 μm2,但未见激光实验结果报道。2016年,华中科技大学李进延课题组研制了50 μm和127 μm芯径的全固态大模场光子晶体光纤18,采用激光脉宽为100 ps、重复频率为500 kHz的种子光,使50 μm芯径的光纤在1064 nm波长处保持准单模传输特性,光束质量因子(M2)为1.37,并获得了8 W的放大激光输出,127 μm芯径的光纤获得了16 W放大激光输出,但光束质量不理想。

中国科学院上海光学精密机械研究所(SIOM)从2011年开始掺镱光子晶体光纤的研发,利用溶胶-凝胶(sol-gel)法结合粉末烧结工艺,开展了掺镱大模场光纤芯棒玻璃的制备研究,制备了Yb3+/Al3+、Yb3+/Al3+/P5+、Yb3+/Al3+/F-、Yb3+/Al3+/P5+/F-共掺石英玻璃作为纤芯玻璃,对其光学和光谱性质随成分及热历史的变化规律开展了系统研究19-31。在此基础上,开展了掺镱大模场光子晶体光纤的设计、制备和激光放大性能的研究。本文在简要介绍掺镱光子晶体光纤的设计要点和光纤芯棒玻璃的制备工艺基础上,着重介绍了SIOM在掺镱大模场光子晶体光纤研制方面取得的最新进展。

2 大模场掺镱光子晶体光纤的设计

2.1 基本原理

根据导光原理的不同,光子晶体光纤可分为折射率导引型光子晶体光纤和光子带隙型光子晶体光纤。根据制备材料的不同,光子晶体光纤可以分为空气孔结构光子晶体光纤和全固态结构光子晶体光纤。空气孔结构光子晶体光纤可只用单一材料,通过调整空气孔的分布、大小等参数获得各种不同的光学特性,以下重点讨论空气孔结构掺镱光子晶体光纤的设计。

对于折射率导引型掺镱光子晶体石英光纤,模式在纤芯中的传输条件为

nFSM<neff<ncore

式中:nFSM为无限结构范围内第一包层模的有效折射率;neff为模式的有效折射率;ncore为纤芯折射率。当纤芯模式LP01的有效折射率大于nFSM,而LP11模的有效折射率小于nFSM时,光纤运行在单模状态。

nFSM与空气孔的占空比d/Λd为空气孔的直径,Λ为相邻空气孔中心的距离)有关,占空比d/Λ越小,则说明空气孔所占包层面积越少,则nFSM越接近纯石英的有效折射率。对空气孔结构参数dΛ进行参数化扫描,计算不同取值下的包层折射率,结果如图1所示,其中nclad为包层等效折射率。表明能够通过对空气孔结构参数的优化,实现对nFSM的较大范围调控。

图 1. 光子晶体光纤的结构参数对包层有效折射率的影响。(a)包层有效折射率与空气孔结构参数的关系;(b)光子晶体光纤端面

Fig. 1. Effects of structure parameters of PCF on effective refractive index of cladding. (a) Relationship among effective refractive index of cladding and parameters of air holes; (b) cross section of PCF

下载图片 查看所有图片

掺镱大模场光子晶体光纤的设计目标是:具有大的模场直径同时保持良好的模式特性及功率稳定性。为实现这一目标,除调整光子晶体结构参数外,纤芯折射率的大小和均匀性对实现具有良好模式的大模场激光非常重要。在固定芯径条件下,当纤芯折射率与包层折射率差值大于某一特定值时,就无法实现单模传输。因此,为获得大模场激光良好的模式特性必须严格控制纤芯折射率大小和均匀性。图2给出了40 μm芯径掺镱光子晶体光纤在d=2 μm,Λ=13 μm的条件下基模LP01与第一高阶模LP11的限制损耗。可以看出,当纤芯折射率从1.44985增大到1.44990时,LP11模式的损耗可以达到10.0 dB/m,而基模LP01的损耗保持在0.1 dB/m以下,此时对应的模场直径可以超过30 μm。纤芯折射率的变化为5×10-5,与纯石英包层折射率的差小于1×10-4。这对纤芯玻璃的制备提出了很高要求。

图 2. 40 μm芯径光子晶体光纤(d=2 μm,Λ=13 μm)的限制损耗、重叠因子及模场面积随纤芯折射率的变化。(a)限制损耗;(b)重叠因子和模场面积

Fig. 2. Confinement loss, overlap factor, and mode field area of 40-μm-core PCF (d=2 μm, Λ=13 μm) versus refractive index of core. (a) Confinement loss; (b) overlap factor and mode field area

下载图片 查看所有图片

2.2 保偏掺镱大模场光子晶体光纤的设计

在实际应用中,通常采用保偏型光子晶体光纤实现偏振光输出。对于光子晶体光纤而言,有两种获得高双折射系数的途径:一是通过改变纤芯附近的空气孔形状、尺寸或者排列实现对称性的改变;二是在纤芯周围填充各向异性材料以提高某一偏振方向的应力。掺镱大模场光子晶体光纤的纤芯数值孔径较小,应力区带来纤芯折射率的改变可能会劣化光纤的模式特性,因此需要精准设计掺镱大模场光子晶体光纤的应力区的大小及位置。

与传统熊猫型保偏包层光纤类似,通常采用掺硼的石英玻璃棒作为制备保偏光纤的填充应力材料。对于包层光纤,需要考虑硼棒的大小和位置对应力双折射的影响。对于掺镱大模场光子晶体光纤,采用堆垛工艺制备预制棒时,需要综合考虑硼棒的数量、位置以及硼棒单元结构对应力双折射以及模式的影响。与包层结构保偏光纤类似,硼棒的数量越多、排布位置离纤芯越近,纤芯的应力双折射系数越大,光纤慢轴的有效折射率变化也越大。如图3(a)所示,硼棒外部通常含有一定厚度的纯石英层,和硼棒一起构成了硼棒单元结构,其中白色区域为纯石英,阴影区域为掺硼区域。当硼棒单元边与边的距离为16 μm时,硼棒单元中掺硼区域的尺寸对光子晶体光纤的双折射以及导波模式的限制损耗的影响如图3(b)所示。可以看出,当硼棒单元尺寸一定时,掺硼区域的尺寸变化可以引起双折射以及限制损耗的较大变化。当掺硼区域的尺寸较大时,产生的应力双折射系数较大,可能会引起光纤慢轴方向的折射率增大,从而导致模式增多。而当掺硼区域的尺寸较小时,产生的应力双折射系数较小,可能无法提供有效的保偏效果。由于光子晶体光纤对纤芯折射率的均匀性有严格的要求,故对于光子晶体光纤而言,需要设计合适的硼棒参数以获得理想的保偏效果同时保证良好的模式特性。

图 3. 应力区对保偏性能的影响。(a)硼棒单元结构;(b)硼棒尺寸对光子晶体光纤双折射及模式损耗的影响

Fig. 3. Effects of stress area on polarization performance. (a) Structure of boron-doped glass rod unit; (b) confinement loss and birefringence of PCF versus boron-doped glass rod size

下载图片 查看所有图片

3 掺镱大模场光子晶体光纤的制备

3.1 大尺寸高掺杂均匀性掺镱芯棒的制备

从上述设计要点可知,掺镱大模场光子晶体光纤对掺镱芯棒玻璃的折射率均匀性提出了很高要求,折射率波动需要控制在10-5量级。本课题组2011年利用溶胶-凝胶法结合高温烧结技术制备了稀土掺杂石英玻璃芯棒,满足了掺镱大模场光子晶体光纤对大尺寸、高光学均匀性芯棒的需求。该方法的芯棒制备流程如图4所示2632。其制备工艺为:在溶胶的制备阶段,按照设计的玻璃组分0.05Yb2O3-2Al2O3-1P2O5-96.95SiO2(组分前的数字表示摩尔分数,单位为%),将不同配比的正硅酸乙酯(TEOS)、无水乙醇(C2H5OH)、H3PO4、AlCl3·6H2O、YbCl3·6H2O、六氟硅酸铵混合物作为前驱体,加入适量去离子水进行水解反应。在石英玻璃中,Al2O3是一种有效的稀土离子分散剂,可以显著提高Yb3+在石英玻璃中的掺杂浓度,防止发生Yb3+聚集引发的浓度猝灭甚至更为严重的玻璃析晶问题。P2O5除了具有与Al2O3相似的分散稀土离子的作用外,还可以与共掺杂的Al2O3一起形成[AlPO4]结构30,该结构可降低掺杂石英玻璃的折射率。更重要的是,P2O5的引入可以有效抑制Yb3+掺杂石英光纤的光致暗化(PD)现象27-28。氟的引入能够大幅降低掺杂石英玻璃的折射率,其与[AlPO4]共同起到有效降低掺镱石英玻璃折射率的作用,从而获得的掺镱大模场光子晶体光纤实现了单模激光输出所需要的极低纤芯数值孔径。将上述混合液充分混合搅拌20 h,得到均匀的透明溶胶。在透明溶胶发生聚合反应后,对其进行脱水脱碳热处理,热处理温度为20~1100 ℃,得到干燥的凝胶粉末。凝胶粉末在1750 ℃高温真空炉(真空度为10-4 Torr,1 Torr=1.33322×102 Pa)中熔融3 h变成透明掺镱石英玻璃。该玻璃经高温氢氧焰加热后成棒,通过后续抛光被加工成尺寸为2.5 mm×50.0 mm的芯棒。采用堆垛法制备掺镱大模场光子晶体光纤预制棒,然后在2000 ℃下拉制成光纤。

图 4. 基于溶胶-凝胶法结合高温烧结技术制备掺镱石英玻璃芯棒及光子晶体光纤的工艺流程32

Fig. 4. Fabrication process flow of Yb-doped silica glass rod and PCF based on sol-gel method combined with high temperature sintering technique[32]

下载图片 查看所有图片

掺镱大模场光子晶体光纤对掺镱芯棒玻璃的要求极高。首先,为抑制非线性效应,要求Yb3+掺杂浓度高,因此尽量缩短光纤使用长度。高浓度Yb3+需要Al3+共掺作为溶解剂。为有效削弱光致暗化效应,需要共掺P。芯棒中高掺杂Yb和Al、P元素的引入,造成了芯棒折射率远高于纯石英玻璃包层的折射率,不能满足大模场光子晶体光纤单模激光输出的条件。因此,需要引入F降低芯棒折射率,使芯棒玻璃折射率接近纯石英玻璃折射率。F、P等易挥发物质的引入对芯棒玻璃的掺杂均匀性带来极大挑战。通过对稀土掺杂石英玻璃芯棒组成-微观结构-光学及激光性能的不断改进19-43,确定了Yb/Al/P/F四元素掺杂石英玻璃芯棒并优化了配方组成,获得了高掺杂均匀性、低损耗、折射率精确可控的芯棒玻璃,用于掺镱大模场光子晶体光纤的制备。图5显示了所制备的掺镱芯棒与折射率分布。

图 5. 掺镱石英玻璃芯棒性能33。(a)芯棒照片;(b)折射率分布

Fig. 5. Performance of Yb-doped silica glass rod[33]. (a) Picture of glass rod; (b) profile of refractive index

下载图片 查看所有图片

3.2 热历史对Yb3+/Al3+/P5+/F-共掺石英玻璃折射率的影响

掺镱大模场光子晶体光纤的制备需要经历一系列热过程,值得注意的是热历史的变化会不同程度地影响包层玻璃和纤芯玻璃的折射率,从而引起光纤数值孔径的改变。Guo等34采用溶胶-凝胶法结合高温烧结技术,制备了组分为0.12Yb2O3-3.2Al2O3-2.7P2O5-93.98SiO2-F(组分前的数字表示摩尔分数,单位为%,标记为YbAPF0.85)的芯棒玻璃。将YbAPF0.85玻璃切割成四块,根据其热历史不同,分别命名为原始(pristine)、退火(An)、氢氧焰加热(FireP)和氢氧焰加热-退火(FireP-An)的YbAPF0.85玻璃。其中,原始YbAPF0.85玻璃指未改变其热历史的玻璃。将原始YbAPF0.85玻璃放入已加热至1000 ℃的管式退火炉中退火3 h,同时采用氩气气氛保护。待退火至设定时间后,在高温下将样品取出并淬冷至室温,得到退火的YbAPF0.85玻璃。这一退火过程称为预退火过程。采用1800 ℃左右的氢氧焰抛光退火的YbAPF0.85玻璃,然后淬冷至室温,以此模拟光纤拉丝过程,得到火焰抛光的YbAPF0.85玻璃。将火焰抛光的YbAPF0.85玻璃进行退火处理,退火条件与预退火一致,这一过程简称为后退火过程。为监测不同过程中光纤数值孔径的变化,选用商用纯石英玻璃(F300)为包层玻璃,并采用与YbAPF0.85玻璃相同的处理工艺改变F300玻璃的热历史。

图6(a)为不同热历史的纤芯玻璃YbAPF0.85和包层玻璃F300在1064 nm波长处的折射率。1000 ℃下的退火处理会导致YbAPF0.85和F300玻璃的折射率降低,且二者折射率差值(Δn)也降低。但火焰抛光后,两种玻璃的折射率和折射率差值均明显升高。对火焰抛光的样品进行退火处理,发现其折射率和Δn明显降低。

图 6. 热历史对折射率的影响34。(a)不同热历史的纤芯玻璃YbAPF0.85和包层玻璃F300在1064 nm波长处的折射率;(b)数值孔径

Fig. 6. Effect of thermal history on refractive index[34]. (a) Refractive indexes of core glass YbAPF0.85 and cladding glass F300 with different thermal histories at 1064 nm; (b) numerical aperture

下载图片 查看所有图片

研究表明,热历史会导致纯石英和Yb3+/Al3+/P5+/F-共掺石英玻璃发生可逆的结构变化,进而导致折射率变化。对于F300玻璃,其折射率对热历史的依赖性主要与Si—O—Si环结构有关。而YbAPF0.85玻璃的折射率对热历史的依赖性来源于Si—O—Si环结构、Al的配位数和P(4Al,0Si)(4)结构的变化,且以Al的配位数和P(4Al,0Si)(4)结构的变化为主。因此,在相同处理条件下,YbAPF0.85玻璃的折射率变化程度大于F300玻璃,从而导致数值孔径随热历史改变,如图6(b)所示。

因此,根据以上热历史对玻璃折射率的影响规律,可以利用后退火处理工艺调控Yb3+/Al3+/P5+/F-共掺光子晶体光纤(YbAPF PCF)的数值孔径,进而调控光纤光束质量。图7(a)、(b)分别为原始和退火YbAPF PCF的远场光斑,发现退火处理可以明显改善光纤的光束质量。原始光纤的光斑是非高斯对称的,含有高阶模。退火后光斑质量明显改善,其对应的光束质量因子M2为1.9。这一结果表明热退火处理可以有效调控掺镱大模场光纤的纤芯数值孔径。

图 7. 热历史对输出光束质量的影响34。(a)原始YbAPF PCF的光斑;(b)退火后YbAPF PCF的光斑

Fig. 7. Effect of thermal history on output beam quality[34]. (a) Laser beam profile of pristine YbAPF PCF; (b) laser beam profile of annealed YbAPF PCF

下载图片 查看所有图片

3.3 掺镱大模场光子晶体光纤的制备

通常采用堆叠法制备光子晶体光纤预制棒。根据空气孔型Yb3+掺杂光子晶体光纤的结构设计要求,光纤预制棒由5部分组成,分别是Yb3+掺杂的芯棒、内包层毛细管、内包层套管、外包层毛细管和外包层套管。按照设计的d/Λ要求,拉制尺寸均匀的毛细管,以六角密排的方式堆叠成预制棒。根据设计的7芯或19芯结构,在预制棒的中心抽去7根或者19根毛细管,放入Yb3+掺杂的芯棒作为光纤的纤芯。对于保偏结构的光子晶体光纤,则在芯区旁边的对应位置抽去毛细管,用相应尺寸的硼棒替代;将密排的预制棒固定在石英套管内,形成最终的光子晶体光纤预制棒。用堆叠法制备预制棒时,以下两点值得注意:一是制备的毛细管、硼棒和芯棒的尺寸与设计值的误差要尽量小且均匀性好,这样才能在堆叠时实现密排,有利于光子晶体光纤拉制时保持设计的结构;二是要保护好毛细管、硼棒和芯棒的表面,避免引入灰尘等杂质,否则光纤损耗增加。

完成预制棒制备后,即可在光纤拉丝塔上拉制光子晶体光纤。在拉制光纤的过程中,最重要的是要保证光纤的结构符合设计要求,即确保包层内的空气孔直径与设计值一致且均匀分布,而毛细管的间隙要充分地闭合。因此,拉制空气孔型光子晶体光纤需要合适的拉丝温度、拉丝速度等工艺参数,同时还需要采用高精度的压力控制系统对预制棒各结构内的压力值进行调节。比如在包层的毛细管内维持一定的正压以保持空气孔尺寸,而在套管内维持一定的负压使得毛细管的间隙闭合。此外,采用二次拉丝的方法,有利于保持空气孔型光子晶体光纤的结构。即先将预制棒拉制成中间体(cane),再将中间体拉制成光子晶体光纤。通过减小每次拉制过程中的拉伸比,减少光子晶体光纤结构的变形。图8为本课题组拉制的四种不同规格的掺镱大模场(LMA)光子晶体光纤。其中图8(a)和图8(b)分别为50 μm芯径和75 μm芯径的非保偏型Yb3+掺杂光子晶体光纤,图8(c)和图8(d)分别为40 μm芯径和100 μm芯径的保偏型Yb3+掺杂光子晶体光纤。

图 8. SIOM研制的四款Yb3+掺杂大模场光子晶体光纤的端面。(a)50 μm芯径PCF端面;(b)75 μm芯径PCF端面;(c)40 μm芯径PCF端面;(d)100 μm芯径PCF端面

Fig. 8. Cross sections of four kinds of Yb3+-doped LMA PCFs fabricated in SIOM. (a) Cross section of 50-μm-core PCF; (b) cross section of 75-μm-core PCF; (c) cross section of 40-μm-core PCF; (d) cross section of 100-μm-core PCF

下载图片 查看所有图片

4 掺镱大模场光子晶体光纤的性能

表1汇总了本课题组自2013年以来制备的掺镱大模场光子晶体光纤的纤芯成分、Yb3+掺杂浓度、芯径、激光输出功率和模式。通过10年的持续研究,已实现了纤芯组成从Yb/Al双掺到Yb/Al/P/F四掺,纤芯直径从30 μm到100 μm,激光工作模式从CW到主振荡功率放大(MOPA),光纤类型从非保偏型到保偏(PM)型,光束质量因子M2不断改进的发展目标。以下详细介绍课题组在非保偏和保偏型掺镱大模场光纤方面的研究进展。

4.1 非保偏掺镱大模场光子晶体光纤的激光放大性能

掺镱大模场光子晶体光纤的激光性能是由纤芯及结构参数共同决定的,如图9(a)、(b)所示,在早期研究中,掺镱芯棒中的Yb3+离子和其他共掺剂(Al、P等)在纤芯中的分布非常不均匀,引起折射率大幅波动。所制备的100 μm芯径光子晶体光纤实现了255 W的1030 nm的脉冲放大输出,并且无损坏,但模式特性差,如图9(c)、(d)所示44

图 9. 早期研制的光子晶体光纤及激光性能44。(a)掺镱大模场光子晶体光纤的端面;(b)纤芯照片;(c)放大输出的近场光强分布;(d)功率放大曲线

Fig. 9. Early developed PCF and laser performance[44]. (a) Cross section of Yb-doped LMA PCF; (b) picture of fiber core; (c) amplified output laser intensity distribution in near field; (d) power amplification curve

下载图片 查看所有图片

分析表明,纤芯的掺杂不均匀主要是Yb离子的掺杂浓度较高,引入的Al、P,以及F离子浓度较高,在芯棒玻璃制备过程中P、F元素的挥发造成的。为此,制备了低Yb掺杂浓度的掺镱石英纤芯玻璃,降低了P、Al、F的浓度,并提出二次高温均化法改善芯棒玻璃的均匀性45。二次高温均化的原理是利用高温火焰对Yb3+掺杂石英芯棒进行微区加热至软化,然后反复拉伸叠加,促使不均匀区域扩散均化,从而改善芯棒的均匀性。该芯棒玻璃的折射率分布如图5(b)所示。可以看出,芯棒玻璃折射率的起伏控制在1×10-4以内,且整根芯棒玻璃在150 mm长度范围内的折射率均匀性大幅提高。

采用上述方法制备的低Yb3+浓度掺杂芯棒玻璃,拉制了光纤芯径约为50 μm、内包层直径约为260 μm的掺镱大模场光子晶体光纤40。光纤端面电镜照片如图8(a)所示。采用截断法测试了该光纤的吸收系数,在976 nm波长处的吸收为3.2 dB/m,适宜的使用长度为4.7 m左右。空气包层使得内包层数值孔径约为0.55,满足耦合需求。采用图10所示的单程放大装置测试了低浓度掺镱大模场光子晶体光纤的脉冲放大性能。放大种子波长为1030 nm,脉冲宽度为21 ps,重复频率为48.7 MHz,种子光与泵浦光通过透镜从两端耦合进光纤。

图 10. 光子晶体光纤放大性能的测试光路图41

Fig. 10. Test optical path of amplification performance of PCF[41]

下载图片 查看所有图片

由于使用的掺镱大模场光子晶体光纤较长,故必须对其进行弯曲处理。由于弯曲在一定程度上会增大不同模式的损耗,在实际应用时,可通过合适的弯曲直径提高高阶模的弯曲损耗,同时控制基模损耗。测试表明,当弯曲直径为36、40、43、47 cm时,对应的光光放大效率分别为46%、47%、49%和52%。当弯曲直径大于47 cm时放大效率没有明显变化,说明弯曲直径为47 cm时,基模的损耗较小。在47 cm的弯曲直径下,测试了光纤的放大效率以及对应的光束质量因子,如图11所示。当泵浦光功率为520 W时,最大的输出功率为272 W,对应的单脉冲能量为5.6 μJ,峰值功率为266 kW,光光效率为52%。

图 11. 50 μm芯径掺镱大模场光子晶体光纤的放大曲线及不同功率下的光束质量41

Fig. 11. Amplification curve of Yb-doped LMA PCF with 50 μm core diameter and beam quality at different powers[41]

下载图片 查看所有图片

采用光束质量分析仪测试了输出功率为120 W和272 W时的M2,分别为1.6和2.2(图11)。即50 cm芯径低掺杂Yb浓度大模场光子晶体光纤实现了准单模的120 W平均功率激光输出。但是随着输出功率的增加,光束质量逐步劣化。这主要是因为随着泵浦功率的增加,光纤中高阶模的增益提高,且光纤纤芯中热积聚的增大使得基模向高阶模的能量传递增加,所以高阶模比例逐渐增大,输出光斑模式劣化。

使用的光纤长度较长,大幅降低了非线性阈值。如图12所示,当种子光的重复频率为48.7 MHz时,放大平均功率为272 W时尚没有受激拉曼(SRS)信号。但将种子光重复频率降低到10 MHz,当放大平均功率达到100 W时,可以看到明显的受激拉曼信号,此时对应的峰值功率约为570 kW。

图 12. 50 μm芯径掺镱大模场光子晶体光纤在不同重复频率下的激光光谱41

Fig. 12. Output laser spectra of Yb-doped LMA PCF with 50 μm core diameter at different repetition rates[41]

下载图片 查看所有图片

此外,测试了该掺镱光子晶体光纤在120 W放大输出下的功率稳定性,如图13所示。测试表明,在近2 h的考核时间内,输出功率没有下降,功率起伏为1.1%。这说明在百瓦量级的输出功率下,该掺镱光子晶体光纤的模式、功率都保持在一个相对稳定的状态。此时的热累积没有对输出特性产生明显影响。

图 13. 50 μm芯径掺镱光子晶体光纤在120 W输出下的功率稳定性41

Fig. 13. Power stability of Yb-doped LMA PCF with 50 μm core diameter at 120 W output[41]

下载图片 查看所有图片

从上述数据可以看出,当Yb3+离子掺杂浓度较低时,光子晶体光纤的性能得到了显著提升。但低掺镱浓度使得光纤吸收系数较低,故需要使用较长的光纤,这又大幅降低了非线性阈值,制约了应用。因此,有必要适当提升镱离子的掺杂浓度,增加吸收系数,在非线性阈值、前述掺杂均匀性及热效应之间寻找一个平衡点。

以实际使用的掺镱大模场光子晶体光纤长度在2 m以内为应用目标,设计并制备了Yb2O3摩尔分数为0.15%,P、Al、F共掺的芯棒玻璃。该芯棒玻璃的折射率分布如图14所示,可见其折射率与纯石英玻璃相当,折射率起伏小于10-4。以此芯棒玻璃制备了纤芯直径为75 μm,内包层直径为260 μm,吸收系数达到15 dB/m@976 nm的掺镱光子晶体光纤,光纤截面电镜照片如图8(b)所示。采用图10所示的放大光路,测试了1 MHz重复频率、100 ps脉冲宽度下该光纤的放大特性,使用光纤的长度为0.8 m,放大结果如图15所示。测试结果表明:放大效率达到60%;在166 W的泵浦功率下,获得了102 W的放大输出,此时峰值功率达到1 MW,光谱上没有出现明显的受激拉曼信号,信噪比可以达到30 dB,光束质量因子M2约为2。

图 14. 高掺Yb离子浓度的芯棒玻璃折射率分布

Fig. 14. Refractive index profile of core glass rod with high Yb doping concentration

下载图片 查看所有图片

图 15. 75 μm芯径掺镱大模场光子晶体光纤的输出激光性能42。(a)功率放大曲线及光束质量;(b)输出激光光谱

Fig. 15. Output laser performance of Yb-doped LMA PCF with 75 μm core diameter[42]. (a) Power amplification curve and beam quality; (b) output laser spectrum

下载图片 查看所有图片

表 1. 自研掺镱大模场光子晶体光纤的基本参数和激光放大结果

Table 1. Basic parameters and laser amplification results of self-developed Yb-doped LMA PCF

TimeCompositionMole fraction of Yb2O3 /%Fiber typeCore diameter /μmLaser woke modeAverage power / WPeak powerM2Reference
2012Yb/Al0.3PCF30CW6.819
2013Yb/Al0.1PCF90CW8120
2013Yb/Al/P0.05PCF35CW3536
2015Yb/Al/P0.035

DCF

PCF

35

50

CW

3.2

46

1.3

37
2016Yb/Al0.1PCF105MOPA2551.2 MW>1038
2017Yb/Al0.1PCF100MOPA3101.5 MW539
2017Yb/Al/P/F0.075PCF50MOPA9793 kW1.440
2019Yb/Al/P/F0.09PCF50MOPA272266 kW2.241
2019Yb/Al/P/F0.15PCF75MOPA1021 MW2.142
2021Yb/Al/P/F0.15PM-PCF40MOPA1031.4643
2023Yb/Al/P/F0.15PM-PCF100MOPA~50~1.3Proposed

查看所有表

4.2 保偏掺镱大模场光子晶体光纤的激光放大

掺镱光子晶体光纤的主要作用是作为脉冲放大的主放大增益介质,为满足后续倍频应用的需求,掺镱光子晶体光纤必须具有良好的偏振保持性能。利用优化工艺制备具有高光学均匀性的掺镱芯棒,基于该掺镱芯棒分别制备了40 μm和100 μm两种不同纤芯尺寸的保偏掺镱大模场光子晶体光纤,并对两种光纤的放大输出性能进行了测试表征。

4.2.1 40 μm芯径保偏掺镱光子晶体光纤

具有较高吸收系数的40 μm/200 μm保偏掺镱光子晶体光纤的截面如图8(c)所示,其芯径为40 μm,包层直径为200 μm。6层小孔结构光子晶体光纤可以保证实现低的限制损耗,无外包层大孔结构。采用低折射率涂敷树脂作为外包层,采用三层硼棒作为应力保偏区域。该保偏掺镱光子晶体的基本参数如表2所示。

表 2. 40 μm芯径保偏掺镱光子晶体光纤的基本参数

Table 2. Basic parameters of ytterbium doped PM PCF with 40 μm core diameter

Fiber specificationValue
Core diameter~40 μm
Cladding diameter(200±10)μm
Absorption coefficient @915 nm3 dB/m‒3.5 dB/m
Absorption coefficient @976 nm~10 dB/m
Core NA @1030 nm~0.03
Cladding NA @976 nm~0.46
Mode field diameter @1030 nm(29±2)μm
Birefringence @1080 nm≥10-4

查看所有表

图16给出了2 m长光纤在弯曲直径R=30 cm的情况下,利用1030 nm单模非相干光沿着光纤轴移动并激发不同区域时的近场光强分布。入射光斑直径约为6 μm,沿着光纤纤芯移动时,透过光强随激发位置的变化而变化。当单模光在纤芯中心位置时,损耗最小,透过的光强也最大。当单模光移动到纤芯的边缘位置时,此处为纤芯的高损耗区,透过的光强也最小。输出近场像表明:在30 cm的弯曲直径下,该40 μm芯径的保偏光子晶体光纤呈现出单模特性,无高阶模被激发。从图17(a)可以看出:1 m长光纤在弯曲直径为30 cm时,快轴和慢轴的透过率无明显差别。说明在这一测试条件下,光纤不具有起偏特性。进一步测试了不同弯曲直径下的弯曲损耗特性,图17(b)给出了1 m长光纤慢轴在不同弯曲直径下的透过率,可以看出当弯曲直径大于25 cm时,光纤的透过率没有明显变化,此时的弯曲损耗不明显。

图 16. 单模光激发下40 μm芯径掺镱保偏光子晶体光纤不同位置处的近场像

Fig. 16. Beam profiles in near field under single mode laser excitation at different positions of ytterbium doped PM PCF with 40 μm core diameter

下载图片 查看所有图片

图 17. 40 μm芯径掺镱保偏光子晶体光纤的偏振输出特性。(a)在30 cm弯曲直径下快慢轴的透过谱;(b)不同弯曲直径下的慢轴透过率

Fig. 17. Polarization output performance of Yb3+ doped PM PCF with 40 μm core diameter. (a) Transmission spectra in slow and fast axes with 30 cm bending diameter; (b) transmittance in slow axis with different bending diameters

下载图片 查看所有图片

基于该自研的长度为1.4 m 的40 μm芯径保偏掺镱光子晶体光纤,选择弯曲直径为31 cm的水冷盘,设计制备了全光纤化增益模块。泵浦及信号光通过包层光纤合束器耦合进掺镱光子晶体光纤,在光子晶体光纤的输出端熔接处理后的无源光子晶体光纤进行包层光剥除,采用输出端帽扩大光斑以避免损伤。通过20 μm/130 μm保偏合束器与掺镱光子晶体光纤的熔接,将976 nm的泵浦光及1030 nm的信号光耦合到光子晶体光纤中。信号光的重复频率约为27 MHz,脉冲宽度约为30 ps。在150 W的泵浦功率下,放大输出功率约为100 W。不同功率下的近场光斑如图18(a)所示。可以看出:随着放大功率的增加,输出光斑没有明显的变化;最高输出功率时的光束质量因子M2约为1.4,偏振消光比约为12 dB。测试了100 W放大输出下的功率稳定性,结果如图18(b)所示。结果表明:在2 h的考核时间内,输出功率没有下降,平均输出功率为101 W,功率起伏小于1.3%。说明在百瓦量级的输出功率下,该光子晶体光纤的模式、功率稳定。

图 18. 40 μm芯径掺镱保偏光子晶体光纤的激光性能。(a)输出功率及光斑随泵浦功率的变化;(b)100 W放大输出时2 h内的功率稳定性

Fig. 18. Laser performance of Yb3+ doped PM PCF with 40 μm core diameter. (a) Output power and change of beam profile with pump power; (b) power stability for 2 h at 100 W amplified output

下载图片 查看所有图片

上述结果表明,该40 μm芯径保偏掺镱光子晶体光纤放大模块具备初步应用可行性。经国内相关企业装机验证,在50 W的放大输出功率下,其光束质量因子M2可以保持在1.2以下。在数十纳秒脉宽的放大系统中使用该光纤可获得毫焦耳量级单脉冲能量的放大输出。

4.2.2 100 μm芯径掺镱保偏光子晶体光纤

当光子晶体光纤的纤芯尺寸增大时,为了获得大的模场面积和良好的光斑质量,纤芯折射率与包层有效折射率的差非常小,此时无论是纤芯折射率的微小波动还是结构的微小变化均会影响激光放大性能。这对芯棒玻璃的制备和光子晶体光纤的拉制工艺均提出了更高要求。

由于100 μm芯径光子晶体光纤的波导损耗比较大,无法在弯曲状态下使用,通常要求使用的光纤长度在1 m左右,故需要较大的吸收系数以保证对泵浦光的足够吸收。课题组采用自研掺镱芯棒玻璃,制备了100 μm纤芯尺寸保偏掺镱光子晶体光纤,镱离子质量分数约为0.8%,其光纤显微端面如图8(d)所示。光纤纤芯直径为100 μm,内包层直径为285 μm,空气孔结构使得内包层数值孔径大于0.46,保证了大的耦合效率。表3列出了100 μm芯径保偏掺镱光子晶体光纤的基本参数。

表 3. 100 μm芯径掺镱保偏光子晶体光纤的参数

Table 3. Parameters of Yb-doped PM PCF with 100 μm core diameter

Fiber specificationValue
Core diameter~100 μm
Cladding diameter(285±10)μm
Absorption coefficient @915 nm~10 dB/m
Absorption coefficient @976 nm~30 dB/m
Core NA @976 nm~0.01
Cladding NA @976 nm>0.46
Mode filed diameter @1050 nm(75±5)μm

查看所有表

表3所示,100 μm芯径保偏掺镱光子晶体光纤具有大的吸收系数,80 cm左右长的光纤在976 nm处的包层吸收系数可以达到24 dB。同样采用图10所示放大系统测试了80 cm长光纤的放大特性,结果如图19所示。信号光的波长为1030 nm,重复频率为30 MHz,脉冲宽度为30 ps。在76 W的976 nm泵浦功率下,实现了46 W的放大输出,放大效率为60%,输出光束质量因子M2小于1.3。光纤的保偏结构使得光纤在快轴和慢轴上的损耗差别较大。测试表明:在同样测试条件下,慢轴输入的放大效率比快轴输入的放大效率高30%以上,放大输出的偏振度大于95%。

图 19. 100 μm芯径保偏掺镱光子晶体光纤放大输出功率及光斑随泵浦功率的变化

Fig. 19. Output power and beam profile of Yb-doped PM PCF versus pump power with 100 μm core diameter

下载图片 查看所有图片

结合前期报道35图20汇总了自2016年以来基于课题组研制的掺镱大模场光子晶体光纤得到的脉冲激光放大结果,其中Dcore为光纤芯径,Ppeak为峰值功率。在前期基础上,自2020年以来,当掺镱大模场光子晶体光纤的平均放大功率为100 W时,光束质量得到大幅改善。光纤类型已从非保偏拓展到保偏掺镱大模场光子晶体光纤,并实现了40 μm芯径保偏光子晶体光纤全光纤化放大模块的制备。掺镱大模场光子晶体光纤放大皮秒脉冲激光的性能实现了稳步提升。输出功率稳定性的初步考核结果为其推广应用提供了重要依据。

图 20. SIOM自研掺镱大模场光子晶体光纤的研究进展

Fig. 20. Research progress of Yb-doped LMA PCF developed in SIOM

下载图片 查看所有图片

5 总结与展望

随着国内超快激光加工产业的快速发展,发展国产化的掺镱大模场光子晶体光纤已成为国内众多超快激光公司的共性需求。报道了近十年来中国科学院上海光学精密机械研究所在掺镱大模场光子晶体光纤研制方面取得的系列进展。制备了纤芯直径为40、50、75、100 μm的掺镱大模场光子晶体光纤。采用40 μm/200 μm保偏掺镱光子晶体光纤,自主设计制备了全光纤化放大模块,并实现了平均功率超过百瓦级的高光束质量皮秒脉冲放大,光束质量因子M2小于1.5,偏振度大于12 dB,在百瓦放大功率运转下功率起伏小于1.3%。采用100 μm芯径的掺镱大模场光子晶体光纤作为增益光纤,实现了光束质量因子M2<1.3,偏振度>95%的皮秒脉冲放大。未来将通过进一步优化大模场光子晶体光纤的性能指标,满足国内高平均功率超快光纤激光器对核心元件的应用需求。

参考文献

[1] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

[2] Zervas M N, Codemard C A. High power fiber lasers: a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 219-241.

[3] Eidam T, Wirth C, Jauregui C, et al. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers[J]. Optics Express, 2011, 19(14): 13218-13224.

[4] Tao R M, Ma P F, Wang X L, et al. 1.3 kW monolithic linearly polarized single-mode master oscillator power amplifier and strategies for mitigating mode instabilities[J]. Photonics Research, 2015, 3(3): 86-93.

[5] Ma X Q, Zhu C, Hu I N, et al. Single-mode chirally-coupled-core fibers with larger than 50 µm diameter cores[J]. Optics Express, 2014, 22(8): 9206-9219.

[6] Gu G C, Kong F T, Hawkins T, et al. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers[J]. Optics Express, 2014, 22(11): 13962-13968.

[7] Jain D, Jung Y, Nunez-Velazquez M, et al. Extending single mode performance of all-solid large-mode-area single trench fiber[J]. Optics Express, 2014, 22(25): 31078-31091.

[8] Wadsworth W J, Knight J C, Reeves W H, et al. Yb3+-doped photonic crystal fibre laser[J]. Electronics Letters, 2000, 36(17): 1452-1454.

[9] Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystal fiber laser[J]. Optics Express, 2003, 11(7): 818-823.

[10] Stutzki F, Jansen F, Liem A, et al. 26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality[J]. Optics Letters, 2012, 37(6): 1073-1075.

[11] Brooks C D, di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 μm core diameter, Yb-doped rodlike photonic crystal fiber amplifier[J]. Applied Physics Letters, 2006, 89(11): 111119.

[12] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[13] Pedersen M E V, Johansen M M, Olesen A S, et al. 175 W average power from a single-core rod fiber-based chirped-pulse-amplification system[J]. Optics Letters, 2022, 47(19): 5172-5175.

[14] NKT[EB/OL]. [2023-06-05]. https:∥www.nktphotonics.com.

[15] 陈伟, 李诗愈, 王彦亮, 等. 国产化大模场掺镱光子晶体光纤的设计与制备[J]. 光通信研究, 2009(2): 45-46.

    Chen W, Li S Y, Wang Y L, et al. Design and fabrication of high numerical aperture and large mode-field Ytterbium-doped photonic crystal fibers[J]. Study on Optical Communications, 2009(2): 45-46.

[16] 陈瑰, 蒋作文, 彭景刚, 等. 空气包层大模场面积掺镱光子晶体光纤研究[J]. 物理学报, 2012, 61(14): 144206.

    Chen G, Jiang Z W, Peng J G, et al. Study of air-clad large-mode-area ytterbium doped photonic crystal fiber[J]. Acta Physica Sinica, 2012, 61(14): 144206.

[17] 刘建涛, 周桂耀, 夏长明. 基于粉末烧结技术制备镱铝共掺大模场光子晶体光纤[J]. 光子学报, 2013, 42(5): 552-554.

    Liu J T, Zhou G Y, Xia C M. Fabrication of Yb3+/Al3+ co-doped large-mode-area photonic crystal fiber based on powder sintering technology[J]. Acta Photonica Sinica, 2013, 42(5): 552-554.

[18] Wei H F, Chen K K, Yang Y C, et al. All-solid very large mode area ytterbium-doped silica microstructured fiber based on accurate control on cladding index[J]. Optics Express, 2016, 24(8): 8978-8987.

[19] 刘少俊. 溶胶-凝胶法制备掺镱石英玻璃和光子晶体光纤的研究[D]. 北京: 中国科学院大学, 2012. 10.3788/col201210.081601

    LiuS J. Investigation on fabrication and spectroscopic properties of Yb3+-doped silica glass and PCF fiber by Sol-Gel method[D]. Beijing: University of Chinese Academy of Sciences, 2012.

[20] Wang S K, Lou F G, Wang M, et al. Characteristics and laser performance of Yb3+-doped silica large mode area fibers prepared by sol-gel method[J]. Fibers, 2013, 1(3): 93-100.

[21] 王世凯. Sol-Gel法制备Yb3+掺杂石英玻璃及大模场光子晶体光纤的研究[D]. 北京: 中国科学院大学, 2014. 10.1016/j.optmat.2013.05.029

    WangS K. Study on fabrication of Yb3+-doped silica glass and its large mode area photonic crystal fiber by sol-gel method[D]. Beijing: University of Chinese Academy of Sciences, 2014.

[22] 楼风光. 溶胶凝胶法制备掺Yb3+, Tm3+石英玻璃芯棒及大模场光纤的研究[D]. 北京: 中国科学院大学, 2014.

    LouF G. Research on Yb3+, Tm3+ doped silica core glasses and their large mode area fibers by sol-gel method[D]. Beijing: University of Chinese Academy of Sciences, 2014.

[23] 许文彬. Sol-gel 法结合粉末烧结制备掺Yb3+石英玻璃及大模场光纤的研究[D]. 北京: 中国科学院大学, 2017.

    XuW B. Study on performance of Yb3+-doped silica glass and its large mode area fiber prepared by sol-gel method combing powder sintering[D]. Beijing: University of Chinese Academy of Sciences, 2017.

[24] 王璠. Yb3+和Er3+掺杂石英玻璃结构和光谱及其光纤激光性能的研究[D]. 北京: 中国科学院大学, 2019.

    WangF. Study on structure and spectroscopic properties of Yb3+ and Er3+ doped silica glass and its fiber laser performance[D]. Beijing: University of Chinese Academy of Sciences, 2019.

[25] 郭梦婷. 热历史对掺Yb3+石英玻璃及光纤性能的影响机理研究[D]. 北京: 中国科学院大学, 2021.

    GuoM T. Study on the influence mechanism of thermal history on the performance of Yb3+-doped silica glass and fiber[D]. Beijing: University of Chinese Academy of Sciences, 2021.

[26] 胡丽丽, 王世凯, 楼风光, 等. 掺Yb石英光纤预制棒芯棒的制备方法: CN103373811A[P]. 2013-10-30.

    HuL L, WangS K, LouF G, et al. Preparation method of Yb doped quartz fiber preform core rod: CN103373811A[P]. 2013-10-30.

[27] Wang S, Lou F, Yu C, et al. Influence of Al3+ and P5+ ion contents on the valence state of Yb3+ ions and the dispersion effect of Al3+ and P5+ ions on Yb3+ ions in silica glass[J]. Journal of Materials Chemistry C, 2014, 2(22): 4406-4414.

[28] Xu W B, Ren J J, Shao C Y, et al. Effect of P5+ on spectroscopy and structure of Yb3+/Al3+/P5+ co-doped silica glass[J]. Journal of Luminescence, 2015, 167: 8-15.

[29] Xu W B, Yu C L, Wang S K, et al. Effects of F- on the optical and spectroscopic properties of Yb3+/Al3+-co-doped silica glass[J]. Optical Materials, 2015, 42: 245-250.

[30] Wang F, Shao C Y, Yu C L, et al. Effect of AlPO4 join concentration on optical properties and radiation hardening performance of Yb-doped Al2O3-P2O5-SiO2 glass[J]. Journal of Applied Physics, 2019, 125(17): 173104.

[31] 胡丽丽. 稀土掺杂石英光纤及应用[M]. 上海: 上海科学技术出版社, 2023.

    HuL L. Rare earth doped silica fiber and its applications[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2023.

[32] Wang S K, Li Z L, Yu C L, et al. Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method[J]. Optical Materials, 2013, 35(9): 1752-1755.

[33] 王孟. 高亮度掺镱大模场光子晶体光纤制备及性能研究[D]. 北京: 中国科学院大学, 2019. 10.3788/col201917.071401

    WangM. Preparation and properties of high brightness Ytterbium doped large mode area photonic crystal fiber[D]. Beijing: University of Chinese Academy of Sciences, 2019.

[34] Guo M T, Wang S K, Zhao T Y, et al. Structural origin of thermally induced refractive index changes in Yb3+/Al3+/P5+/F--co-doped silica glass[J]. Journal of the American Ceramic Society, 2021, 104(10): 5016-5029.

[35] 于春雷, 王孟, 冯素雅, 等. 掺镱大模场光子晶体光纤的研究进展[J]. 激光与光电子学进展, 2019, 56(17): 170602.

    Yu C L, Wang M, Feng S Y, et al. Research progress on ytterbium-doped large mode area photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170602.

[36] Wang S K, Feng S Y, Wang M, et al. Optical and laser properties of Yb3+-doped Al2O3-P2O5-SiO2 large-mode-area photonic crystal fiber prepared by the sol-gel method[J]. Laser Physics Letters, 2013, 10(11): 115802.

[37] Wang S K, Xu W B, Lou F G, et al. Spectroscopic and laser properties of Al-P co-doped Yb silica fiber core-glass rod and large mode area fiber prepared by sol-gel method[J]. Optical Materials Express, 2015, 6(1): 69-78.

[38] Xu W B, Wang M, Feng S Y, et al. Fabrication and laser amplification behavior of Yb3+/Al3+ co-doped photonic crystal fiber[J]. IEEE Photonics Technology Letters, 2016, 28(4): 391-393.

[39] Wang S K, Xu W B, Wang F, et al. Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber[J]. Optical Materials Express, 2017, 7(6): 2012-2022.

[40] Wang F, Hu L L, Xu W B, et al. Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers[J]. Optics Express, 2017, 25(21): 25960-25969.

[41] Wang M, Wang F, Feng S Y, et al. 272 W quasi-single-mode picosecond pulse laser of ytterbium-doped large-mode-area photonic crystal fiber[J]. Chinese Optics Letters, 2019, 17(7): 071401.

[42] 王孟, 王璠, 于春雷, 等. 兆瓦峰值功率输出的超低纤芯数值孔径大模场光子晶体光纤[J]. 光学学报, 2019, 39(5): 0536001.

    Wang M, Wang F, Yu C L, et al. Ultra-low core numerical aperture large mode area photonic crystal fiber with 1 MW peak power output[J]. Acta Optica Sinica, 2019, 39(5): 0536001.

[43] Wang F, Wang M, Shao C Y, et al. Highly fluorine and ytterbium doped polarization maintaining large mode area photonic crystal fiber via the sol-gel process[J]. Optics Express, 2021, 29(25): 41882-41893.

[44] Wang Z W, Li Q R, Wang Z K, et al. 255 W picosecond MOPA laser based on self-made Yb-doped very-large-mode-area photonic crystal fiber[J]. Chinese Optics Letters, 2016, 14(8): 081401.

[45] 于春雷, 王世凯, 王孟, 等. 稀土掺杂石英玻璃棒的均化制备方法: CN106517759B[P]. 2019-06-21. 10.1016/j.jre.2019.05.006

    YuC L, WangS K, WangM, et al. Homogenization preparation method of rare earth doped quartz glass rods: CN106517759B[P]. 2019-06-21.

胡丽丽, 冯素雅, 王孟, 王世凯, 王璠, 郭梦婷, 于春雷, 陈丹平. 掺镱大模场光子晶体光纤研究进展(特邀)[J]. 中国激光, 2024, 51(1): 0106001. Lili Hu, Suya Feng, Meng Wang, Shikai Wang, Fan Wang, Mengting Guo, Chunlei Yu, Danping Chen. Research Progress on Yb-Doped Large Mode Field Photonic Crystal Fibers (Invited)[J]. Chinese Journal of Lasers, 2024, 51(1): 0106001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!