红外, 2022, 43 (4): 33, 网络出版: 2022-07-23  

一种基于定标的红外图像非均匀性分区域校正算法

A Nonuniformity Regional Correction Algorithm for Infrared Image Based on Calibration
作者单位
1 北京跟踪与通信技术研究所,北京 100094
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
3 中国科学院西安光学精密机械研究所,陕西 西安 710119
摘要
红外探测器的非均匀性问题直接影响红外成像质量和测量精度。地基红外辐射测量系统对远距离飞行目标进行成像时往往不能占满全靶面区域。为提高图像质量,提出了一种基于定标的非均匀性分区域校正算法。以靶面大小为640×512的制冷型中波红外探测器为实验对象,基于黑体定标的两点校正法,采用全靶面校正算法及本文算法进行了验证。结果表明,当成像区域小于全靶面的1/3时,分区域非均匀性校正后非均匀性误差低于0.002%。与全靶面非均匀性校正算法相比,此校正算法使非均匀度进一步降低了30%至75%不等,非均匀性误差的下降率大于30%。采用本文算法后,各区域的非均匀度进一步下降,校正目视效果进一步提高。因此该校正方法具有一定的工程应用价值。
Abstract
The nonuniformity of infrared detectors directly affects the quality of infrared imaging and measurement accuracy. Ground-based infrared radiation measurement systems often can not occupy the full surface of the detector when imaging long-distance flying targets. In order to improve image quality, a method of nonuniformity regional correction based on calibration is proposed. Taking the cooled mid-wave infrared detector with a target surface of 640×512 as the experimental object, based on the two-point calibration method of blackbody calibration, the whole surface calibration algorithm and the algorithm proposed in this paper are used for verification. The results show that when the imaging area is less than 1/3 of the surface, the nonuniformity error after region nonuniformity correction is less than 0.002%. Compared with the full-target nonuniformity correction algorithm, this correction algorithm further reduces the nonuniformity by about 30% to 75%, and the reduction rate of the nonuniformity error is greater than 30%. After using the correction algorithm in this paper, the nonuniformity of each area is further reduced, and the visual effect of correction is further improved. Therefore, the correction method has certain engineering application value.
参考文献

[1] 邢素霞. 红外热成像与信号处理[M]. 北京: 国防工业出版社, 2010.

[2] 杨国庆, 乔彦峰. 地基红外辐射测量系统提高测量精度的关键技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2020.

[3] Qin Y, Li B. Effective Infrared Small Target Detection Utilizing a Novel Local Contrast Method[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1890-1894.

[4] 姬弘桢. 热红外高灵敏度高光谱图像信息处理技术研究[D]. 上海: 中国科学院上海技术物理研究所, 2016.

[5] 吕宝林, 佟首峰, 徐伟, 等. 基于配准的机载红外非均匀性校正技术应用[J]. 中国光学, 2020, 13(5): 1124-1137.

[6] 王明昌, 樊养余, 陈宝国, 等. 基于SOPC的红外图像自适应非均匀性校正设计[J]. 红外与激光工程, 2017, 46(6): 0628001.

[7] 钱润达, 赵东, 周慧鑫, 等. 基于加权引导滤波与时域高通滤波的非均匀性校正算法[J]. 红外与激光工程, 2018, 42(12): 1-6.

[8] 杨正兴, 谈新权, 尚小冬. 红外焦平面非均匀性校正算法研究与实现[J]. 红外技术, 2004, 26(3): 11-14.

[9] Perry D L, Dereniak E L. Linear Theory of Nonuniformity Correction in Infrared Staring Sebsors[J]. Optical Engineering, 1993, 32(8): 1854-1859.

[10] 樊凡, 马泳. 基于场景的红外非均匀性校正算法研究[D]. 武汉: 华中科技大学, 2015.

[11] 韩开亮. 基于两点法的红外图像非均匀性校正算法及其DSP实现[J]. 红外技术, 2007, 29(9): 541-544.

[12] 李旭, 杨虎. 基于两点的红外图像非均匀性校正算法应用[J]. 红外与激光工程, 2008, 37(8): 608-610.

[13] 毛小群, 石俊生, 何文学. 基于定标法的红外图像非均匀性校正[J]. 云南师范大学学报, 2009, 29(4): 57-61.

[14] 费宬. 基于国产InGaAs焦平面探测器的短波红外成像关键技术研究[D]. 济南: 山东大学, 2020.

[15] 红外焦平面阵列特性参数测试技术规范GB/Y 17444-2013[S]. 北京:中国标准出版社, 20 13.

宗永红, 高昕, 李希宇, 李周, 胡蕾, 雷呈强, 郑东昊, 师恒. 一种基于定标的红外图像非均匀性分区域校正算法[J]. 红外, 2022, 43(4): 33. ZONG Yong-hong, GAO Xin, LI Xi-yu, LI Zhou, HU Lei, LEI Cheng-qiang, ZHENG Dong-hao, SHI Heng. A Nonuniformity Regional Correction Algorithm for Infrared Image Based on Calibration[J]. INFRARED, 2022, 43(4): 33.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!