激光技术, 2023, 47 (6): 736, 网络出版: 2023-12-05  

多基色激光显示系统彩色散斑分布特性的研究

Distribution characteristics of color speckle in multi-primary laser display systems
邓林宵 1,2,3杨雨桦 1,2,3姚昞晖 1,2,3朱立全 1,2,3王贯 1,2,3顾春 1,2,3许立新 1,2,3,*
作者单位
1 中国科学技术大学 核探测与核电子学国家重点实验室,合肥 230026
2 中国科学技术大学 物理学院 安徽省光电子科学与技术重点实验室,合肥 230026
3 先进激光技术安徽省实验室,合肥 230026
摘要
为了探究多基色激光显示系统的彩色散斑特性,采用蒙特卡洛的统计方法模拟了彩色散斑的空间分布。在CIE-u′v′色品图中,定义了彩色散斑椭圆的简化模型,描述了显示系统的彩色散斑空间分布,分析了不同基色数目和波长组合对彩色散斑的影响。结果表明,该椭圆随着基色数目的增加而缩小,彩色散斑严重程度下降; 三基色系统的椭圆面积为16.0×10-4,而六基色系统的椭圆面积为6.81×10-4,其中绿基色对彩色散斑的影响最大; 在多基色显示系统中,对于给定白平衡点的各基色亮度配比不唯一,因此在颜色表现和散斑现象之间存在权衡,当减小散斑对比度值较大的基色亮度的权重时,将减弱彩色散斑现象。该研究为多基色激光显示系统的彩色散斑评估提供了理论指导。
Abstract
In order to investigate the color-speckle characteristics in multi-primary laser display systems, the spatial distribution of color speckles was simulated by a Monte Carlo method. In the CIE-u′v′ chromaticity diagram, a simplified ellipse model of color speckles was defined to describe the spatial distribution of color speckles in the display system intuitively. The effects of the number and different wavelength combinations of primary colors on color speckles were analyzed. The results show that with the increase in the number of primary colors, the ellipse becomes smaller, and the color speckle is reduced. The ellipse area of the three-primary system is 16.0×10-4, while that of the six-primary system is 6.81×10-4. Especially, the green primary has the greatest effect on color speckles. In the multi-primary display system, the brightness ratio of each primary color is not unique for a given white point, so there is a tradeoff between the color performance and speckle phenomenon. When the brightness weight of the primary color with a large speckle contrast value is reduced, the color speckle phenomenon will be alleviated. This study can provide theoretical guidance for color speckle evaluation of multi-primary laser display systems.
参考文献

[1] CHELLAPPAN K V, ERDEN E, UREY H. Laser-based displays: A review[J]. Applied Optics, 2010, F49(25): 79-98.

[2] HECHT J. A short history of laser development[J]. Applied Optics, 2010, F49(25): 99-122.

[3] YAMADA H, MORIYASU K, SATO H, et al. Effect of incidence/observation angles and angular diversity on speckle reduction by wavelength diversity in laser projection systems[J]. Optics Express, 2017, 25(25): 32132-32141.

[4] GOODMAN J W. Speckle phenomena in optics: Theory and applications[M]. New York, USA: SPIE, 2007: 1-3.

[5] DENG L X, DONG T H, FANG Y W, et al. Speckle reduction in laser projection based on a rotating ball lens[J]. Optics & Laser Technology, 2021, 135: 106686.

[6] TONG Zh M, SUN Ch Y, MA Y F, et al. Design and implementation of passive speckle reduction in laser projector with refractive optical element and lenslet integrator[J]. Optik, 2022, 252: 168531.

[7] LAPCHUK A S, XU Q Y, LE Z Ch, et al. Theory of speckle su-ppression in a laser projector based on a long multimode fiber[J]. Optics & Laser Technology, 2021, 144: 107416.

[8] DENG L X, FANG Y W, YANG Y H, et al. Effective speckle reduction method based on a rotating ball lens[C]//Applied Optics and Photonics China (AOPC 2020). Beijing, China: SPIE, 2020: 1156505.

[9] KURODA K, ISHIKAWA T, AYAMA M, et al. Color speckle[J]. Optical Review, 2014, 21(1): 83-89.

[10] IEC. Laser display devices-part 5-4: Optical measuring methods of colour speckle:IEC 62906-5-4[S]. Geneva, Switzerland: IEC, 2018.

[11] KINOSHITA J, OCHI K, TAKAMORI A, et al. Color speckle measurement of white laser beam emitted from fiber output of RGB laser modules[J]. Optical Review, 2019, 26(6): 720-728.

[12] KINOSHITA J, YAMAMOTO K, KURODA K. Color speckle mea-surement errors using system with XYZ filters[J]. Optical Review, 2018, 25(1): 123-130.

[13] SONG H Y, LI H F, LIU X. Studies on different primaries for a nearly-ultimate gamut in a laser display[J]. Optics Express, 2018, 26(18): 23436-23448.

[14] IEC. Electronic displays-part 2-1: Measurements of optical characteristics—Fundamental measurements:IEC 62977-2-1[S]. Geneva, Switzerland: IEC, 2021.

[15] DENG L X, YANG Y H, WANG G, et al. Color speckle assessment for laser projection systems based on human speckle perception[J]. Optics & Laser Technology, 2022, 156: 108554.

[16] INTERNATIONAL TELECOMMUNICATION UNION. Parameter values for ultra-high definition television systems for production and international programme exchange:Recommendation ITU-R BT.2020-2[S]. Geneva, Switzerland: International Telecommunication Union, 2015.

[17] SONG Y X, PAN J W. High speckle reduction rate in a laser projection system[J]. Applied Optics, 2021, 60(34): 10564-10569.

[18] YAO B H, ZHU L Q, DENG L X, et al. Upper limit of gamut vo-lumes in multi-primary display systems[J]. Optics Express, 2022, 30(20): 36576-36591.

[19] ZHU L Q, YAO B H, WANG G, et al. Impact of color temperature on the color gamut volume of a six-primary-laser display system[J]. Optik, 2022, 264: 169414.

[20] FANG Y W, DENG L X, GU Ch, et al. Study on projection screen and speckle contrast in laser display technology[C]//Applied Optics and Photonics China (AOPC 2020). Beijing, China: SPIE, 2020: 1156504.

[21] FAIRCHILD M D. Color appearance models[M]. 3rd ed. Rochester Institute of Technology, USA: John Wiley & Sons Ltd, 2013: 77-81.

[22] KINOSHITA J, YAMAMOTO K, TAKAMORI A, et al. Visual resolution of raster-scan laser mobile projectors under effects of color speckle[J]. Optical Review, 2019, 26(1): 187-200.

[23] DENG L X, YAO B H, YANG Y H, et al. Color-speckle assessment in multi-primary laser-projection systems based on a 3D Jzazbz color space[J]. Optics Express, 2022, 30(18): 33374-33394.

邓林宵, 杨雨桦, 姚昞晖, 朱立全, 王贯, 顾春, 许立新. 多基色激光显示系统彩色散斑分布特性的研究[J]. 激光技术, 2023, 47(6): 736. DENG Linxiao, YANG Yuhua, YAO Binghui, ZHU Liquan, WANG Guan, GU Chun, XU Lixin. Distribution characteristics of color speckle in multi-primary laser display systems[J]. Laser Technology, 2023, 47(6): 736.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!