激光生物学报, 2022, 31 (6): 559, 网络出版: 2023-03-06  

大气CO2浓度和气温升高下硝化抑制剂后效对大豆土壤无机氮和N2O排放的影响

Effects of Nitrification Inhibitors on Soybean Soil Inorganic Nitrogen and N2O Emissions under Elevated Atmospheric CO2 Concentration and Temperature
作者单位
山西农业大学农学院,太谷 030801
摘要
为探究气候变化背景下,小麦-大豆轮作体系中小麦季施用硝化抑制剂对大豆土壤无机氮、N2O排放及相关酶活性的后效作用,在控制气室内设置了不同的大气CO2浓度(400和600 μmol/mol)和气温(环境温度T和T+2℃),在此基础上测定了小麦季添加硝化抑制剂时大豆土壤的硝态氮和铵态氮的含量、土壤硝化-反硝化相关酶活性以及N2O排放量。结果表明,小麦季添加硝化抑制剂配合麦秸还田,使大豆土壤的硝态氮和铵态氮均有所增加,但是对土壤硝化-反硝化酶的活性影响较小。升温(ET)使大豆土壤硝态氮含量显著增加,而铵态氮含量显著降低; 大气CO2浓度增加(EC)或同时升高气温和CO2浓度(ECT),土壤硝态氮和铵态氮的含量均有所增加,但与环境高温和CO2浓度(CK)下的无机氮含量差异不显著。不同环境条件下的土壤硝化-反硝化酶的活性没有明显规律。在ET和ECT条件下,大豆生长季N2O排放总量均显著高于CK处理,且添加硝化抑制剂使N2O排放量降低。EC与CK条件下的N2O排放量差异较小,但在CK条件下,硝化抑制剂处理的N2O排放量显著高于普通尿素处理。综上所述,在气温和CO2浓度升高背景下,硝化抑制剂的合理施用有利于大豆土壤有效氮的增加,但是温度升高(ET和ECT)使N2O排放量增加,在此条件下添加硝化抑制剂可以减少N2O的排放,单独升高CO2浓度(EC)时,N2O排放的变化不明显。本研究可为未来气候变化背景下的小麦-大豆轮作施肥管理及农田N2O减排提供理论支持。
Abstract
To investigate the effects of nitrification inhibitors applied in the wheat season on the soil inorganic nitrogen (N), N2O emissions and related enzyme activities in the soybean season for the wheat-soybean rotation system under the background of climate change, different atmospheric CO2 concentration (400 and 600 μmol/mol) and air temperature (ambient temperature T and T+2℃) were set in the control air chamber. The contents of soybean soil nitrate and ammonium N, nitrification and denitrification-related enzyme activities and N2O emissions were measured when nitrification inhibitors were added in the wheat season. The results showed that the addition of nitrification inhibitor combined with wheat straw returning to the field in wheat season increased soil nitrate N and ammonium N in soybean season, whereas it had little effect on the enzyme activities of soil nitrification-denitrification. Elevated air temperature (ET) significantly increased the content of nitrate N in soybean soil, while the content of ammonium N significantly decreased. At the conditions of increased atmospheric CO2 concentration (EC) or simultaneously increased air temperature and CO2 concentration (ECT), soil nitrate N and ammonium N content both increased, whereas there were no significantly difference with the inorganic N content under ambient temperature and CO2 concentration (CK). The enzyme activities of soil nitrification-denitrification under different environmental conditions showed no obvious regularity. Under ET and ECT conditions, the total amount of N2O emission in soybean growing season was significantly higher than that in CK treatment, and the addition of nitrification inhibitors reduced N2O emission. The difference of N2O emissions between EC and CK conditions was small, whereas the N2O emission of nitrification inhibitor treatment was significantly higher than that of common urea treatment under CK condition. To sum up, under the background of rising air temperature and CO2 concentration in the future, reasonable application of nitrification inhibitors is beneficial to the increase of available N in soybean soil, whereas the increase of air temperature (ET and ECT) may increase N2O emissions, and adding nitrification inhibitors can reduce N2O emissions. The changes in N2O emissions are not obvious when the CO2 concentration (EC) increased alone. This study can provide a theoretical support for fertilization management and farmland N2O emission reduction under the wheat-soybean crop rotation system under the background of future climate change.
参考文献

[1] ZHU Z L, CHEN D L. N fertilizer use in China contributions to food production, impacts on the environment and best management strategies [J]. Nutrient Cycling in Agroecosystems, 2002, 63: 117-127.

[2] 孙志梅, 武志杰, 梁文举, 等. 3,5-二甲基吡唑对铵态氮硝化及作物生长的影响[J]. 植物营养与肥料学报, 2006(6): 869-874.

[3] 孙志梅, 武志杰, 陈利军, 等.土壤硝化作用的抑制剂调控及其机理[J]. 应用生态学报, 2008, 19(6): 1389-1395.

[4] 章淑艳, 王素花, 孙志梅, 等. 不同氮肥施用方式及硝化抑制剂对小豆生长发育及氮素利用的影响[J]. 河南农业科学, 2016, 45(10): 15-18, 28.

[5] INESON P, TAYLOR K, HARRISON A F, et al. Effects of climate change on nitrogen dynamics in upland soils. 1. A transplant approach [J]. Global Change Biology, 1998, 4(2): 143-152.

[6] 李学文,李树营,王齐龙, 等, 减氮配施脲酶/硝化抑制剂对冬瓜品质、产量和土壤氮磷淋失的影响[J]. 中国瓜菜, 2021, 34(1): 55-59.

[7] 王静, 王允青, 张凤芝, 等, 脲酶/硝化抑制剂对沿淮平原水稻产量、氮肥利用率及稻田氮素的影响[J]. 水土保持学报, 2019, 33(5): 211-216.

[8] 张锦源, 李彦生, 于镇华, 等. 作物-土壤氮循环对大气CO2的研究进展[J]. 中国农业科学, 2021, 54(8): 1684-1701.

[9] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 87-90.

[10] ROBINSON C H, SAUNDERS P W, MADANN J, et al. Does nitrogen deposition affect soil microfungal diversity and soil N and P dynamics in a high Arctic ecosystem? [J]. Global Change Biology, 2004, 10(7): 1065-1079.

[11] 刘艳, 陈书涛, 刘燕, 等. 增温对农田土壤碳氮循环关键过程的影响 [J]. 中国环境科学, 2013, 33(4): 674-679.

[12] 张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体 (CO2、CH4、N2O) 的源/汇强度及其温室效应研究进展[J]. 中国生态农业学报, 2011, 19(4): 966-975.

[13] CHEN X, WANG G, ZHANG T, et al. Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow [J]. Atmospheric Environment, 2017, 157: 111-124.

[14] 胡正华, 周迎平, 崔海羚, 等. 昼夜增温对大豆田土壤N2O排放的影响[J]. 环境科学, 2013, 34(8): 2961-2967.

[15] PRITCHARD S H G, ROGERSH O H, PRIORS A, et al. Elevated CO2 and plant structure: a review [J]. Global Change Biology, 1999, 5(7): 807-837.

[16] ZAKD R, PREGITZER K S, CURTISP S, et al. Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles [J]. Plant and Soil, 1993, 151(1): 105-117.

[17] 罗卫红, MAYUMI Yoshimoto, 戴剑峰, 等. 开放式空气CO2浓度增高对水稻冠层微气候的影响[J]. 应用生态学报, 2002(10): 1235.

[18] 张继舟, 倪红伟, 王建波, 等. 模拟氮沉降和CO2浓度增加对三江平原小叶章群落土壤总有机碳和氮素含量的影响[J]. 地球与环境, 2013, 41(3): 216-225.

[19] BAGGSE M, RICHTER M, CADISCH G, et al. Denitrification in grass swards is increased under elevated atmospheric CO2 [J]. Soil Biology and Biochemistry, 2003, 35(5): 729-732.

[20] BARNARD R, BARTHES L, ROUXX L, et al. Atmospheric CO2 elevation has little effect on nitrifying and denitrifying enzyme activity in four European grasslands [J]. Global Change Biology, 2004, 10(4): 488-497.

[21] LAM S K, LIN E, NORTON R, et al. The effect of increased atmospheric carbon dioxide concentration on emissions of nitrous oxide, carbon dioxide and methane from a wheat field in a semi-arid environment in northern China [J]. Soil Biology and Biochemistry, 2011, 43(2): 458-461.

[22] 傅丽, 苏壮, 石元亮, 等. 脲酶抑制剂 (NBPT) 与不同硝化抑制剂组合对土壤尿素氮转化的影响[J]. 沈阳农业大学学报, 2010, 41(3): 339-341.

[23] 俞巧钢, 殷建祯, 马军伟, 等. 硝化抑制剂DMPP应用研究进展及其影响因素[J]. 农业环境科学学报, 2014, 33(6): 1057-1066.

[24] YANG J B, LI X C, XU L, et al. Influence of the nitrification inhibitor DMPP on the community composition of ammonia-oxidizing bacteria atmicrosites with increasing distance from the fertilizer zone[J]. Biology and Fertility of Soils, 2013, 49: 23-30.

李超, 郝兴宇, 李萍, 宗毓铮, 张东升, 史鑫蕊. 大气CO2浓度和气温升高下硝化抑制剂后效对大豆土壤无机氮和N2O排放的影响[J]. 激光生物学报, 2022, 31(6): 559. LI Chao, HAO Xingyu, LI Ping, ZONG Yuzheng, ZHANG Dongsheng, SHI Xinrui. Effects of Nitrification Inhibitors on Soybean Soil Inorganic Nitrogen and N2O Emissions under Elevated Atmospheric CO2 Concentration and Temperature[J]. Acta Laser Biology Sinica, 2022, 31(6): 559.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!