中国激光, 2024, 51 (5): 0515001, 网络出版: 2024-03-05  

飞秒激光刻写光纤光栅实现9 kW全光纤振荡器

9 kW All‑Fiber Oscillator Based on Fiber Gratings Inscribed by Femtosecond Lasers
作者单位
1 国防科技大学前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学南湖之光实验室,湖南 长沙 410073
摘要
光纤光栅(FBG)在高功率光纤振荡器中发挥着重要作用,既可以作为谐振腔腔镜,又可以抑制受激拉曼散射(SRS)效应。使用飞秒激光在芯径为30 μm的大模场双包层光纤(LMA-DCF)上刻写了波长为1080 nm的FBG对以及波长为1135 nm的啁啾倾斜光纤光栅(CTFBG),利用FBG对搭建了全光纤振荡器,并使用CTFBG抑制了SRS,实现了9 kW激光功率输出,斜率效率为83.4%。研究结果有利于推动高功率FBG的研制和高功率光纤振荡器的发展。
Abstract
Objective

High-power fiber oscillators have significant applications in industrial processing and other fields. Fiber Bragg gratings (FBGs) are key components of high-power fiber oscillators. On the one hand, FBGs can act as cavity mirrors of high-power fiber oscillators to select a signal wavelength and couple output signal power. On the other hand, FBGs with special designs such as chirped and tilted fiber Bragg gratings (CTFBGs) can be used to suppress stimulated Raman scattering (SRS) in high-power fiber oscillators. Generally, the traditional approach for fabricating these two types of FBGs is the ultraviolet laser (UV) phase-mask method. However, hydrogen-loaded and thermally annealed treatments are required. When annealing is not thorough, the residual hydrogen and hydroxyl groups in the FBGs will absorb lasers to generate heat, which is the main factor limiting the power FBGs can withstand. To date, the maximum handling powers of mirror FBGs and CTFBGs written using UV lasers are 8.0 kW and 4.3 kW, respectively. The development of femtosecond laser inscription technology provides a promising new method for the inscription of FBGs. FBGs can be directly inscribed into fibers without hydrogen loading. Thus, the heating generated by the hydrogen and hydroxyl groups in FBGs can be avoided. Currently, the handling power of a CTFBG written using femtosecond lasers exceeds 10 kW. However, the maximum output power of the all-fiber oscillator based on femtosecond-laser-written FBGs is 8 kW due to the limitations of transverse mode instability (TMI).

Methods

FBGs and CTFBGs used in cavity mirrors are written using the femtosecond-laser phase-mask method. Figure 1(a) shows the reflection spectra of the high-reflectivity FBG (HR FBG) and low-reflectivity FBG (LR FBG). The 3-dB bandwidths of the HR FBG and LR FBG are 4.0 nm and 2.1 nm with reflectivities of more than 99% and approximately 6%, respectively. Figure 1(b) shows the CTFBG spectrum. The central wavelength of the transmission spectrum is 1135 nm with a 3-dB bandwidth of approximately 18 nm and maximum depth of 15 dB. Figure 2 shows the setup of the fiber oscillator. The oscillator employs a counter-pumping scheme with an active 30 μm /600 μm ytterbium-doped fiber (YDF) and pump source of 969 nm+982 nm dual-wavelength diode laser (LD). The dashed box in Fig.2 indicates the CTFBG, which is inscribed on the side of the LR FBG and located in the resonator to ensure the oscillator system is compact and stable.

Results and Discussions

Figure 3(a) shows the output spectra at maximum output powers. Due to the suppression of SRS by the CTFBG, the Raman light intensity at 1135 nm decreases by approximately 16 dB. In addition, the TMI threshold of the oscillator increases from 8250 W to 8700 W with the CTFBG, as shown in Fig.3(b). Figure 3(c) shows the changes in the output power. The slope efficiency decreases from 85.4% to 83.4% with the CTFBG. Therefore, the insertion loss of the CTFBG is approximately 2%. Despite the decrease in slope efficiency, the output power increases from 8910 W to 9050 W due to the suppression of the SRS and the increase in the TMI threshold.

Conclusions

This study demonstrates an all-fiber oscillator with maximum output power. An all-fiber oscillator is constructed based on femtosecond-laser-written FBGs, and femtosecond-laser-written CTFBGs are used to suppress the SRS, ultimately achieving a 9-kW laser power output.

高功率光纤振荡器在高端制造等领域中有着广泛的应用1。近年来,光纤振荡器的输出功率不断突破。2020年,日本藤仓公司报道了8 kW的全光纤振荡器2;2023年,国防科技大学也报道了8 kW级的全光纤振荡器3。光纤光栅(FBG)是高功率光纤振荡器中的核心器件。一方面,FBG作为振荡器的谐振腔腔镜,起到选择波长和耦合输出功率的作用。另一方面,特殊设计的FBG,例如啁啾倾斜光纤光栅(CTFBG)4-6,可以作为拉曼光滤除器,抑制振荡器中的受激拉曼散射(SRS)效应。这两类高功率FBG的传统制备方法为紫外曝光法,在刻写FBG前需要对光纤进行载氢处理以增加光敏性,在刻写FBG后需要通过热退火消除残余的氢分子与刻写过程中生成的羟基。当退火不彻底时,FBG中残余的氢气与羟基会吸收激光并发热,成为限制其承受功率的主要因素。目前紫外曝光法刻写的腔镜用FBG与CTFBG的最高承受功率分别为8 kW2与4.3 kW7。使用飞秒激光刻写高功率FBG可以有效解决氢气和羟基引起的FBG发热问题。因为飞秒激光可以直接在光纤中刻写FBG,光纤不需要载氢增敏处理。目前,飞秒激光刻写的CTFBG的承受功率已突破10 kW,但是利用飞秒激光刻写的腔镜用FBG只实现了8 kW的全光纤振荡器3,振荡器功率的提升受限于模式不稳定(TMI)效应。近期,国防科技大学南湖之光实验室采用飞秒激光相位掩模板法在大模场双包层光纤(LMA-DCF)上刻写了中心波长为1080 nm的高反(HR)与低反(LR)FBG,用于搭建全光纤振荡器。通过在LR FBG的一侧刻写CTFBG,抑制SRS效应并提高TMI阈值,振荡器的输出功率被提升至9050 W。

实验采用与文献[38]相同的系统刻写腔镜用FBG与CTFBG,刻写前须剥除光纤涂覆层。在一根纤芯/包层直径为30 μm/600 μm的LMA-DCF上刻写了HR FBG,在一根纤芯/包层直径为30 μm/250 μm的LMA-DCF上刻写了LR FBG。图1(a)展示了HR FBG和LR FBG的反射谱,其中心波长为1080 nm。HR FBG和LR FBG的3 dB带宽分别为4.0 nm和2.1 nm,前者反射率大于99%,后者的反射率约为6%,适当降低LR FBG的反射率有助于提高振荡器的效率。将CTFBG与LR FBG刻写在同一根光纤上,使振荡器系统更加紧凑稳定,CTFBG的光谱如图1(b)所示。透射谱的中心波长为1135 nm,3 dB带宽约为18 nm,最大深度为15 dB。图2展示了光纤振荡器的结构示意图。振荡器采用纯后向泵浦方案,增益光纤是长度为38 m、纤芯/包层直径为30 μm/600 μm的掺镱光纤(YDF)。使用969 nm+982 nm双波长半导体激光器(LD)作为泵浦源,可以减小YDF单位长度的热负载,从而提高TMI阈值9-10。使用一个泵浦/信号合束器耦合泵浦光,其信号输入/输出光纤的纤芯/包层直径分别为30 μm/600 μm和30 μm/250 μm。图2虚线框所示为CTFBG,其被刻写在LR FBG的一侧且位于谐振腔内,用于抑制SRS效应。除了引入一个CTFBG,振荡器系统的其他部分不作改变。此外,为了提升振荡器的输出功率,其输出端未加入包层光滤除器(CLS)。这是因为出现TMI效应后,从纤芯处泄漏到包层的信号光增多,包层光被CLS滤除会使得振荡器效率下降。

图 1. FBGs的测量光谱。(a)HR FBG和LR FBG;(b)CTFBG

Fig. 1. Measured spectra of FBGs. (a) HR FBG and LR FBG; (b) CTFBG

下载图片 查看所有图片

图 2. 光纤振荡器的结构示意图

Fig. 2. Structural diagram of fiber oscillator

下载图片 查看所有图片

实验结果如图3所示。图3(a)展示了刻写CTFBG前后最高功率下的输出光谱。由于SRS被CTFBG有效抑制,1135 nm波长的拉曼光的强度下降16 dB,且光谱展宽现象也得到抑制。图3(b)展示了刻写CTFBG前后输出时序信号对应的频谱。未出现TMI现象时,频谱中只在12 kHz处有一个基底频率噪声引起的频率峰。当输出功率增大到8250 W时,在20 kHz处出现了一个新的频率峰,意味着出现了TMI现象。在刻写CTFBG后,当输出功率增大到8700 W时,才在4 kHz处出现新的频率峰,所以TMI阈值从8250 W提高至8700 W。这是因为SRS也会诱导TMI的产生,所以当SRS被抑制时,TMI 阈值也会有所提高11图3(c)展示了插入CTFBG前后的输出功率变化。在刻写CTFBG后,斜率效率由85.4%下降到83.4%,CTFBG的插损约为2%。尽管斜率效率下降,但是由于SRS被抑制以及TMI阈值的提升,输出功率由8910 W提高至9050 W,功率的进一步提升受限于TMI。实验中,使用带水冷散热系统的金属热沉,通过填充高效导热硅脂,对HR FBG、LR FBG和CTFBG进行散热处理,光栅在最高功率下的温度均小于40 ℃,具有承受更高功率的潜力。

图 3. 测试结果。(a)输出光谱;(b)输出时序信号对应的频谱;(c)输出功率

Fig. 3. Test results. (a) Output spectra; (b) frequency spectra corresponding to output time-domain signals; (c) output power

下载图片 查看所有图片

本文基于飞秒激光刻写FBG对搭建了全光纤振荡器,并通过飞秒激光刻写CTFBG抑制了SRS,进而提高了TMI阈值,最终实现了9 kW激光功率输出。今后将通过进一步抑制TMI,实现基于飞秒激光刻写FBG的10 kW全光纤振荡器。

参考文献

[1] 王小林, 张汉伟, 杨保来, 等. 高功率掺镱光纤振荡器: 研究现状与发展趋势[J]. 中国激光, 2021, 48(4): 0401004.

    Wang X L, Zhang H W, Yang B L, et al. High-power ytterbium-doped fiber laser oscillator: current situation and future developments[J]. Chinese Journal of Lasers, 2021, 48(4): 0401004.

[2] Wang Y, Kitahara R, Kiyoyama W, et al. 8-kW single-stage all-fiber Yb-doped fiber laser with a BPP of 0.50 mm-mrad[J]. Proceedings of SPIE, 2020, 11260: 1126022.

[3] Li H, Yang B L, Wang M, et al. Femtosecond laser fabrication of large-core fiber Bragg gratings for high-power fiber oscillators[J]. APL Photonics, 2023, 8(4): 046101.

[4] Jiao K R, Shu J, Shen H, et al. Fabrication of kW-level chirped and tilted fiber Bragg gratings and filtering of stimulated Raman scattering in high-power CW oscillators[J]. High Power Laser Science and Engineering, 2019, 7: e31.

[5] Song H Q, Yan D L, Wu W J, et al. SRS suppression in multi-kW fiber lasers with a multiplexed CTFBG[J]. Optics Express, 2021, 29(13): 20535-20544.

[6] 李昊, 叶新宇, 王蒙, 等. 基于飞秒激光刻写的高功率啁啾倾斜光纤光栅[J]. 光学学报, 2023, 43(17): 1706002.

    Li H, Ye X Y, Wang M, et al. High-power chirped and tilted fiber gratings written by femtosecond lasers[J]. Acta Optica Sinica, 2023, 43(17): 1706002.

[7] 王蒙, 田鑫, 赵晓帆, 等. 国产25 μm/400 μm啁啾倾斜光纤光栅传输功率突破4 kW[J]. 中国激光, 2022, 49(6): 0615001.

    Wang M, Tian X, Zhao X F, et al. Transmission power of homemade chirped and tilted fiber Bragg grating on 25 μm/400 μm fiber exceeding 4 kW[J]. Chinese Journal of Lasers, 2022, 49(6): 0615001.

[8] Li H, Wang M, Wu B, et al. Femtosecond laser fabrication of chirped and tilted fiber Bragg gratings for stimulated Raman scattering suppression in kilowatt-level fiber lasers[J]. Optics Express, 2023, 31(8): 13393-13401.

[9] Wan Y C, Xi X M, Yang B L, et al. Enhancement of TMI threshold in Yb-doped fiber laser by optimizing pump wavelength[J]. IEEE Photonics Technology Letters, 2021, 33(13): 656-659.

[10] Wan Y C, Yang B L, Wang P, et al. Optimizing the pump wavelength to improve the transverse mode instability threshold of fiber laser by 3.45 times[J]. Journal of Modern Optics, 2021, 68(18): 967-974.

[11] Hejaz K, Shayganmanesh M, Rezaei-Nasirabad R, et al. Modal instability induced by stimulated Raman scattering in high-power Yb-doped fiber amplifiers[J]. Optics Letters, 2017, 42(24): 5274-5277.

李昊, 杨保来, 饶斌裕, 叶新宇, 田鑫, 王蒙, 武柏屹, 赵蓉, 李智贤, 陈子伦, 肖虎, 马鹏飞, 王泽锋, 陈金宝. 飞秒激光刻写光纤光栅实现9 kW全光纤振荡器[J]. 中国激光, 2024, 51(5): 0515001. Hao Li, Baolai Yang, Binyu Rao, Xinyu Ye, Xin Tian, Meng Wang, Baiyi Wu, Rong Zhao, Zhixian Li, Zilun Chen, Hu Xiao, Pengfei Ma, Zefeng Wang, Jinbao Chen. 9 kW All‑Fiber Oscillator Based on Fiber Gratings Inscribed by Femtosecond Lasers[J]. Chinese Journal of Lasers, 2024, 51(5): 0515001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!