光学技术, 2023, 49 (4): 412, 网络出版: 2024-01-04  

基于集成成像的悬浮光场3D显示系统

A floating 3D display system based on the integral imaging
作者单位
1 常州工学院 光电信息工程学院 江苏 常州 213032
2 四川大学 电子信息学院 四川 成都 610065
摘要
悬浮显示技术是一种非常具有发展前景的显示技术,它可以将图像显示在空中,给观看者带来沉浸感和临场感的体验。目前国内悬浮3D显示技术研究还处于初级阶段。文章提出基于集成成像的悬浮3D显示系统,系统由集成成像3D显示器、半透半反镜和逆反光膜组成; 分析了集成成像3D显示的工作原理和逆反光膜的悬浮显示原理。将集成成像3D显示技术与基于逆反光膜的悬浮显示技术相结合,集成成像3D显示器发出的光线经过半透半反镜的反射到达逆反光膜,逆反光膜将光线以入射的角度进行反射并重建出3D图像,在实现3D图像悬浮显示的同时也解决了集成成像3D图像深度反转的问题,但是3D图像的亮度被大幅度的降低。系统为悬浮3D显示提供新的理论依据,为解决集成成像3D图像深度反转提供新的方法。
Abstract
The floating display is a very promising technology which can display images in the air, giving the viewers immersive and immediate experience. A floating 3D display system based on the integral imaging is proposed, which consists of an integral imaging 3D display, a semi-translucent semi-retroreflective mirror and a retro-reflective film. The working principle of the integral imaging 3D display and the floating display principle of retro-reflective film are analyzed. Therefore, combining the integral imaging 3D display technology with the floating display technology based on a retro-reflective film, the light rays from the integral imaging 3D display will reach the retro-reflective film through the reflection of the semi-transparent and semi-retroreflective mirror, and the retro-reflective film reflects the light at the angle of incidence and reconstructs the 3D image again, which solves the problem of depth inversion of the integral imaging 3D image while realizing the floating 3D image display. The system provides a new theoretical basis for floating 3D displays and a new method for solving the depth inversion of integral imaging 3D images.
参考文献

[1] Yagi A, Imura M, Kuroda Y, et al. 360-degree fog projection interactive display[C]∥ SIGGRAPH Asia 2011, Hong Kong, China, December,2011. ISBN 978-1-4503-0807-6/11/0012.

[2] Min S W, Kim J, Lee B. Three-dimensional electro-floating display system based on integral imaging technique[C]∥Proc. SPIE 5664, Stereoscopic Displays and Virtual Reality Systems XII,2005:332-339.

[3] Yamamoto H, Tomiyama Y, Suyama, S. Floating aerial LED signage based on aerial imaging by retro-reflection (AIRR) [J]. Opt. Express,2014,22(22):26919-26924.

[4] Yoshimizu Y, Iwase E. Radially arranged dihedral corner reflector array for wide viewing angle of floating image without virtual image[J]. Optics Express,2019,27(2):918-927.

[5] Wang Qionghua, Ji Chaochao, Li Lei, et al. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher[J]. Opt. Express,2016,24(1):9-16.

[6] Zhang Hanle, Deng Huan, Yu Wentao, et al. Tabletop augmented reality 3D display system based on integral imaging[J]. J. Opt. Soc. Am. B,2017,34(5):B16.

[7] Zhang Yukun, Fu Yuqing, Wang Huaiqian, et al. High resolution integral imaging display by using a microstructure array[J]. Journal of Optical technology,2019,86 (2):100-104.

[8] Yang Le, Sang Xinzhu, Yu Xunbo, et al. Viewing-angle and viewing-resolution enhanced integral imaging based on time-multiplexed lens stitching[J]. Opt.Express,2019,27(11):15679-15692.

[9] Ives H E. Optical properties of a lippmann lenticulated sheet[J]. Journal of the Optical Society of America,1931,21(3):171-176.

[10] Igarishi Y, Murata H, Ueda M. 3D display system using a computer-generated integral photograph[J]. Japanese Journal of Applied Physics,1978,17(9):1683-1684.

[11] Yang L, McCormick M, Davies N. Discussion of the optic of a new 3-D imaging system[J]. Applied Optics,1988,27(21):4529-4534.

[12] Aral J, Okano F, Hoshino H, et al. Gradient-index lens-array method based on real-time integral photography for three-dimensional images[J]. Applied Optics,1998,37(11):2034-2045.

[13] Ser J I, Cha S, Shin S H, et al. Orthoscopic integral imaging 3D display by use of negative lens array[J]. Lasers and Eletro-Optics,2003,2:614.

[14] Okano F, Hoshino H, Arai J, et al. Real-time pickup method for a three-dimensional image based on integral photography[J]. Applied Optics,1997,36(7):1598-1603.

[15] Yeom J, Hong K, Jeong Y, et al. Solution for pseudoscopic problem in integral imaging using phase-conjugated reconstruction of lens-array holographic optical elements[J]. Optics Express,2014,22(11):13659-13670.

[16] M. Martínez-Corral, B. Javidi. Formation of real, orthoscopic integral images by smart pixel mapping[J]. Optics Express,2005,13(23):9175-9180.

[17] H. Navarro, R. Martinez-Cuenca, G. Saavedra, et al. 3D integral imaging display by smart pseudoscopic-to-orthoscopic conversion (SPOC)[J]. Optics Express,2010,18(25):25573-25583.

[18] Fei Wu, Huan Deng, Cheng-Gao Luo, et al. Dual-view integral imaging three-dimensional display[J]. Applied Optics,2013,52(20):4911-4914.

[19] Fei Wu, Qiong-Hua Wang, Huan Deng, et al. High optical-efficiency integral imaging display with a gradient-aperture parallax barrier[J]. Chinese Optics Letters,2013,11(7):71101-71106.

[20] Iwane T, Nakajima M, Yamamoto H. Light-field display combined with aerial imaging by retro-reflection (AIRR)[C]∥ Imaging and Applied Optics Congress,2016:TM3A.3

[21] Wang Zi, Wang Anting, Ma Xiaohui, et al. Integral floating 3-D display using two retro-reflector arrays[C]∥IEEE Photonics Journal,2017,9(2):7000108.

[22] Yu Xunbo, Sang Xinzhu, Gao Xin, et al. Floating aerial 3D display based on the freeform-mirror and the improved integral imaging system[J]. Optics Communication,2018,423:162-166.

徐秋云, 陈小刚, 郑益, 芦鹏, 陈迪, 潘柏晓, 陈杰, 赵悟翔. 基于集成成像的悬浮光场3D显示系统[J]. 光学技术, 2023, 49(4): 412. XU Qiuyun, CHEN Xiaogang, ZHENG Yi, LU Peng, CHEN Di, PAN Baixiao, CHEN Jie, ZHAO Wuxiang. A floating 3D display system based on the integral imaging[J]. Optical Technique, 2023, 49(4): 412.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!