光学学报, 2024, 44 (1): 0106010, 网络出版: 2024-01-11  

面向分布式传感的散射增强光纤研究进展特邀综述

Research Progress in Scattering Enhanced Optical Fibers for Distributed Sensing
谭滔 1田野 1,2张建中 1,*
作者单位
1 哈尔滨工程大学物理与光电工程学院纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001
2 哈尔滨工程大学烟台研究院先进光纤传感技术研发中心,山东 烟台 264006
摘要
基于光纤后向散射的光纤传感技术具有全分布、长距离等特点,在诸多领域受到广泛关注,被认为是一种变革性技术。散射光随着传输距离增加逐渐减弱,信噪比降低导致感知性能下降,成为限制其在长距离应用的主要因素。通过光纤掺杂、写入弱光栅等方式增加光纤散射强度可以有效缓解该问题。然而对于数千米的超长距应用,散射增加意味光纤损耗的增强,通过增加散射来提升信噪比的方法失效。本课题组提出一种增加光纤后向散射强度但不增加光纤本征损耗的散射收集能力增强光纤。本文分别从增强光纤散射能力和增强后向收集能力两个方向总结了散射增强光纤的几种方法,论述了各种方法的优缺点,并进行了简要展望。
Abstract
Significance

Fiber optic sensing technology has been widely applied in multiple fields and has received good feedback due to its advantages of strong anti-interference ability, small size, high sensitivity, long transmission distance, and intrinsic safety. Distributed sensing technology (OTDR, Φ-OTDR, and OFDR) based on Rayleigh scattering can achieve long-distance, large-scale, and multi-parameter monitoring, which has attracted more attention in applications. With the increasing demand for monitoring length and range in various application fields, the traditional methods of increasing light source power and detector detection limit have reached their peaks in increasing the system distance. The development of new scattering enhancement methods is urgent, so as to enhance the sensing distance of distributed sensing technology.

Progress

We review several ways to enhance the scattering light in fibers by enhancing their scattering coefficients and backscattering ability from the perspective of fibers, as well as the limitations and application scenarios of these methods. We also provide a detailed introduction to the latest scattering enhancement method, which enhances scattering by enhancing the backward collection coefficient and has potential development prospects in future distributed sensing.

Conclusions and Prospects

The research progress of fiber optic scattering enhancement methods is as follows.

1) Enhancing fiber scattering by increasing the scattering coefficient. It is commonly used to increase the scattering coefficient of optical fibers through irradiation, microstructure, and nanoparticle doping to enhance the Rayleigh backscattering light of the fibers.

The irradiation method is to increase the refractive index disturbance in the fiber by ultraviolet or radiation irradiation. It is simple to operate and has continuous scattering enhancement. However, it will increase the loss of the optical fiber and reduce the sensing distance. At the same time, the preparation speed of the optical fiber is slow, requiring the removal of the coating layer and resulting in a decrease in mechanical strength. Therefore, the scattering enhanced fiber prepared in this way is difficult to apply to engineering environments.

The microstructure method refers to the formation of weak gratings, reflection points, Fabry Perot cavities, and other junction microstructures in optical fibers through ways such as ultraviolet, femtosecond, and arc discharge, resulting in significant refractive index changes. This method is flexible and has higher controllability, and it can be continuously prepared in large quantities without removing the coating layer and changing the mechanical strength of the optical fiber. However, it still increases the loss of the optical fiber and reduces the sensing distance, and the distribution of microstructures in the optical fiber is discrete, forming a minimum sensing area between two adjacent points, which reduces the spatial resolution of the distributed sensing system. This method is suitable for applications in sensing scenarios that do not require high spatial resolution.

The doping method of nanoparticles increases scattering in fibers by doping elements such as germanium, calcium, barium, gold, and magnesium. It has continuity, and the scattering enhancement is more obvious. In addition, it can be directly prepared through fiber drawing, which ensures the mechanical properties of the fiber. However, the high scattering enhancement also brings about a significant increase in losses. The losses of nano-doped fibers are generally two or three orders of magnitude higher than those of irradiation and microstructure and are generally applied in sensing scenarios with short distances and high signal-to-noise ratios.

2) Enhancing fiber scattering by increasing the backscattering collection coefficient. The method of increasing the backscatter collection coefficient to enhance fiber scattering theoretically does not increase the loss of the fiber, which mainly includes three types: plastic optical fiber, multimode optical fiber, and ultra long adiabatic tapered optical fiber.

Both polymer fiber and multimode fiber can increase the backward collection coefficient by increasing the numerical aperture, but the material absorption loss of polymer fiber itself is greater than that of quartz fiber. Therefore, it is generally applied in short-distance sensing scenarios. Multimode optical fibers have significant mode losses, and dispersion over long distances can degrade the spatial resolution of the system. It is commonly used in scenarios with lengths of kilometers.

Our team has proposed an ultra long tapered single-mode fiber that can increase the backward collection coefficient of the fiber to enhance scattering, without causing external losses. It can break through the distributed sensing long-distance limit of single-mode fiber and achieve sensing with an equal scattering signal-to-noise ratio at each point, and it can be applied to ultra long sensing scenarios with a length of above 150 km. Ultra long tapered single-mode fiber also has the advantage of enhancing the performance of fiber Bragg grating (FBG) arrays. Engraving FBG arrays on tapered optical fibers can effectively increase the remote reflection signal of FBG and expand the number of arrays, which has great development potential for future high-tech composite distributed sensors.

1 引言

自1970年世界上第一根低损耗光纤问世,光纤在通信和传感领域得到了飞速发展。凭借其抗干扰能力强、体型小、敏感度高、传送距离远、本征安全等优势,光纤传感技术已广泛应用于多个领域并得到良好的反馈。光纤传感技术根据传感方式可分为准分布式和分布式两类,准分布式传感方式的典型代表是光纤光栅和法布里-珀罗(法珀)腔,它们常应用于传感器数量为数十甚至上百的监测场景。随着石油化工、电力土木等领域对传感距离和空间分辨率需求的剧增,准分布式传感技术难以满足需求,分布式传感技术受到越来越多的关注。20世纪70年代末,随着光时域反射(OTDR)技术的出现,分布式光纤传感技术得到了迅速发展,出现了基于瑞利散射、拉曼散射及布里渊散射的分布式光纤传感系统,这些系统被广泛应用于温度、应力及其他传感领域。拉曼散射主要用于温度测量,布里渊散射在温度及应力传感方面都有应用,然而这两种散射光相对较弱,对于信号检测及后续处理要求较高,而瑞利散射光相对较强,在长距离传感应用上具有优势。

采用瑞利散射的光纤传感系统主要包括OTDR、相敏光时域反射(Φ-OTDR)和光频域反射(OFDR),它们可以通过感知外界参量引起的散射光强度、偏振及相位1-2的变化实现传感,偏振和相位的改变最终通过光强的变化来实现探测。光纤中的散射光信噪比(SNR;RSNR)是分布式传感系统的重要参数,直接决定了系统的极限传感长度,其由光源性能、散射强度、损耗和噪声共同决定,如图1所示。自20世纪90年代开始,通过编码方式对分布式系统的噪声进行控制,有效延长了系统的传感距离3。21世纪初,随着激光技术的发展,激光器的线宽、功率、噪声性能得到极大的提升,在分布式系统中对光源采用辅助放大4、时间门控5等技术极大提升了系统的传感距离。分布式系统硬件性能不断开发到极限,仍难以满足工业监测对传感距离的需求。从光纤角度,通过增强光纤中的散射来增大信噪比的方式得到了广泛的关注,并开始运用到实际场景。散射增强光纤可以有效增强光纤中的散射1~2个数量级6,提高分布式系统的信噪比达到20 dB7,提高测量精度并延长传感距离8。2020年,美国OFS公司在40 km单模光纤后增加了1.5 km的散射增强光纤9,有效增强了光纤末端的散射信号,提升了系统的传感距离和信噪比,这显示了散射增强光纤的卓越性能。散射增强光纤专为传感需求设计,是光纤传感向传感光纤转变的典型范例。

图 1. 瑞利散射传感分布式系统中的信噪比

Fig. 1. Signal-to-noise ratio in the distributed system of Rayleigh scattering sensing

下载图片 查看所有图片

光纤中散射源自内部存在的密度波动和折射率不均匀分布,当功率为P的探测光脉冲从被测光纤的一端通过耦合器或者环形器注入到被测光纤时,经过散射点发生散射,后向散射光经过原来的传播路径返回,被光电探测器接收,如图2所示,接收到的后向散射光的功率10可以表示为

PRS(z)=ντ2P0Sαsexp-2zαs/λ4

式中:z为光纤中发生瑞利散射的位置,亦为散射位置光纤初始端的距离;P0τ分别为入射光脉冲功率和宽度;ν为光传播的群速度,为常数;αsS分别为光纤瑞利散射衰减系数和后向散射收集系数;λ为入射光波长。

图 2. 光纤中的瑞利散射

Fig. 2. Rayleigh scattering in optical fibers

下载图片 查看所有图片

在光纤中,P0τ是可以通过优化光源进行控制的,但其因受到光纤功率和非线性的限制存在上限,ν在光纤中为常数。因此,光纤中的散射光强度主要通过控制αsS参数实现改变,这也是现阶段散射增强光纤的重要控制方式(图3)。在散射中αs表示光纤中散射发生位置处产生的总散射光占该点入射光的比例,因此提高散射光的比例是快速增强散射的有效方式,常用提高散射光比例的方式包括光纤经过辐照光(紫外光或者射线)、写入微结构和光纤中掺杂纳米粒子。但αs参数决定了式(1)指数项中的光纤传播损耗,αs的增大会降低光纤的传感距离。光纤中的S参数表示光纤后向散射光在总散射光的比例,S参数与光纤中的损耗无关,因此增大S可以直接增强散射光,带来传感距离和信噪比双重提升,但不会带来额外的损耗,现阶段增强散射光收集能力的光纤有塑料光纤(POF)、多模光纤(MOF)。塑料光纤本身的材料属性导致光纤的损耗比较大,不适合长距离分布式传感;多模光纤中的损耗普遍大于单模光纤,无法突破分布式传感长距离的限制。近期,本课题组提出了超长绝热锥形单模散射增强光纤(ULTF),其可增强光纤中散射光的后向收集能力但不带来额外的损耗,可应用于现阶段分布式传感上千米系统中增加散射光信噪比和传感距离。本文首先介绍了散射增强光纤的几种重要方法,分别论述了国内外其他课题组的研究内容,总结了光纤散射增强的优缺点;然后,介绍了本课题组近期在散射增强光纤方面的主要工作;最后,对所有光纤散射增强方式进行了简要对比、总结和展望。

图 3. 光纤散射增强具体方式

Fig. 3. Specific methods of fiber scattering enhancement

下载图片 查看所有图片

2 基于增加光纤散射系数的散射增强光纤

增强光纤中后向散射的最直接方式就是增加光纤中的不均匀性,产生更多的散射光,主要的方式有光纤辐照、写入微结构和掺杂纳米粒子。

2.1 光纤辐照

采用辐照光来控制光纤中的散射是最早运用的方法,其源于光纤的光敏性。从玻璃的微观结构来分析掺锗石英玻璃的光敏性主要源于玻璃结构中缺陷对紫外光的吸收。在锗硅酸盐玻璃中,Si、Ge与O形成四面体结构,每个四面体通过顶角氧连接形成空间网络结构11-12。当光纤中Ge以低价氧化物状态存在时,玻璃中会产生很多点缺陷,主要为中性氧空位缺陷和Ge2+缺陷。在紫外光的照射下,这些点缺陷吸收紫外光子能量,缺陷结构发生变化,变形的反应过程如图4所示。变化的缺陷结构导致纤芯在紫外区域吸收光谱的变化,从而引起折射率改变。

图 4. 光纤紫外光照射下缺陷变化模型

Fig. 4. Model of defect changes in optical fibers under ultraviolet light irradiation

下载图片 查看所有图片

早在1999年,Johlen就发现紫外曝光能够在光纤内部构成缺陷,从而引起瑞利散射光强度的提升13。载氢之后光纤的紫外光敏特性还可进一步增强14,再经过简单的紫外曝光可将瑞利后向散射光增强20 dB15,将光纤应变和温度传感分辨率提高一个数量级,这显示出散射增强光纤信噪比增强在分布式传感运用中的极大价值。2022年,美国 OFS公司报告了面向工程应用的1.5 km长度散射增强光纤,可实现散射增强7 dB左右,应用于DAS中声信噪比提高了39 dB,但光纤衰减提高至0.5 dB/km,这超过了普通单模光纤的衰减9。深圳大学王义平课题组16将散射增强光纤应用到OFDR传感系统中,实现散射增强37.3 dB,OFDR空间分辨率为2 mm,显示出散射增强光纤极大的应用潜力。

除了紫外光,射线辐照光纤也能引起光纤中缺陷数量的增加。2011,上海大学Wen等17研究发现,低水峰单模光纤在伽马射线辐照下瑞利散射系数增大了5倍,并证实了辐照瑞利散射改变主要是由电子在Ge和O原子周围电荷密度再分配引起的缺陷中心引起的,这项工作为光学损耗提供了一个新的解释,并揭示了辐照对瑞利散射影响的新机制,为增强光纤中的散射提供了新手段。在此基础上,北京航空航天大学Jin等18对100 m的Ge/P共掺杂光纤进行辐照并用于分布式传感,通过OTDR测试得到光纤的损耗为68.8 dB/km,这大大超过了单模光纤,散射光纤传感长度仅为100 m。

辐照增强光纤散射的方式可以很容易地用激光或者辐射源诱导,无需对准,操作简单。这种对整根光纤进行连续紫外曝光的方法,虽然能够大幅增强后向散射光信号强度,但光纤的损耗系数也随之增大,从而显著缩短了传感距离,且连续曝光方式的制备成本也较高,制造速度非常慢(大约为每秒数百微米),并且需要剥离纤维护套,降低了光纤的抗拉强度,因此应用到工程的长距离分布式传感中受到一定限制。

2.2 写入微结构

辐照光对光纤纤芯结构的折射率和密度控制具有随机性,借鉴于光纤中特殊结构[光纤光栅(FBG)和法珀腔]对输入光的反射作用,且光纤在线刻写技术19不断完善和成熟,在光纤中周期性写入微结构阵列可以进一步增强光纤中折射率和密度的不均匀性,从而增强散射,微结构阵列包括FBG阵列、法珀腔阵列和菲涅耳反射点,如图5所示。弱FBG(WFBG)阵列被广泛用于增强光纤中的散射,2016年,俄罗斯的Zaitsev等20使用准分子激光器在光纤拉制过程中制备WFBG阵列,散射增强光纤相对于单模光纤实现后向散射增强水平超过30 dB,但WFBG结构本身易受温度和应变影响,从而产生反射波长漂移,极易导致局部散射增强失效。针对此问题,具有连续啁啾光栅阵列21和随机光栅阵列22的散射增强光纤被提出,它们在大带宽(8~10 nm)时表现出弱反射,能够适应大的应变或者温度环境,分别有效增强光纤中的散射光10 dB(损耗为0.4 dB/km)和30 dB。FBG阵列实现散射增强本质上仍是利用光纤的光敏性,但是自身对温度和应变敏感23,使用过程中,FBG阵列的反射波长会发生漂移,反射谱和探测光波长易出现失配,从而失去散射增强效果。此外,FBG阵列在高温环境下以及长时间使用过程中易发生退化24,这直接缩短了散射增强光纤的寿命,因此需要考虑散射增强光纤的稳定性。

图 5. 散射增强光纤微结构类别

Fig. 5. Microstructure category of scattering enhanced fiber

下载图片 查看所有图片

随着高功率激光技术的发展,高功率激光作用到光纤纤芯可以形成FBG、菲涅耳反射点结构,产生永久性的折射率改变和缺陷25,有效解决WFBG退化的问题。2017年,Yan等26使用飞秒激光诱导光纤纤芯纳米光栅的形成,其后向散射增强了40 dB,但传输损耗为15~41 dB/m。2019年,华中科技大学孙琪真团队27制备了具有大谱宽和离散分布位置28、强度可调29的微结构散射增强光纤来提升光纤的适用性,光纤散射增强可达30 dB。随后,王义平团队30尝试使用飞秒激光在标准单模光纤(SMF)中诱导永久的散射改变,光纤的瑞利后向散射强度提升了26 dB,损耗为3 dB/m。除了FBG阵列和菲涅耳反射点,其他微结构也可以实现相同的散射增强效果。超弱法珀干涉仪(IFPI)阵列可以提升信噪比20 dB31,纳米反射器可实现35 dB的散射增强(2.5 km长度上损耗为0.60 dB/km)32。微结构能有效增强光纤中的散射,微结构的热稳定性也被验证,在800 ℃的高温下飞秒激光刻写的散射增强光纤信号稳定26,张建中团队33采用飞秒激光在光纤中写入弱反射点,有效增强信噪比约30 dB,并成功应用于1000 ℃下的温度测量,这说明激光加工微结构的散射增强可以是永久的,相比FBG阵列,其环境适用性更强。激光写入微结构的方式简洁高效,但设备较为昂贵,能量利用率低,因此一种更简单、高效、成本低的替代方式——电弧放电法受到关注。光纤经过电极电弧放电,产生的高温热量加热熔融光纤,从而产生微小形变并诱发了折射率的改变,同时纤芯和包层的热膨胀系数差异导致残余应力释放,也会引起折射率的改变34-36。电弧放电在制备光纤锥、探头、微结构和长周期光纤光栅等方面应用广泛37,张建中团队38采用电弧放电方法在保偏光纤中产生强度可控的弱极化模耦合点,通过控制电弧放电强度和时间可实现近20 dB的散射增强,这为光纤结构上批量化制备弱散射点阵列提供了新的方案。

相对于辐照增强光纤中的散射,在光纤中写入微结构方式的可控性更强,灵活高效,无需剥除光纤涂覆层,光纤强度更高,同时得益于光纤加工技术的发展,光纤中微结构的刻写和控制技术日趋成熟,可以定制化各点的散射增强,实现分布上的散射控制。但微结构的分布在光纤中是离散的,两个相邻点之间构成最小传感区域,这降低了分布式传感系统的空间分辨率。

2.3 掺杂纳米粒子

光纤中的散射来自纤芯的密度起伏和不均匀,常用的辐照和微结构方式是借助激光对纤芯处理产生结构上的改变,但这种处理方式不稳定,控制难度较大。光纤中掺杂纳米粒子可以通过控制掺杂粒子密度和粒子尺寸直接控制折射率的不均匀分布,且可以直接制备出散射增强光纤,成为近年来广受关注的一种散射控制方式。早在1974年,美国Friebele等39-40就发现在光纤的制备过程中,可以通过掺杂一些金属离子来增强光纤的衰减特性41。这种方式控制光纤中的散射是连续的,可以很好地解决离散增强方式带来的空间分辨率降低的问题。Ge元素是最先掺入光纤的元素,物质的量分数为98%的GeO2掺杂纤维被验证具有29.2 dB散射信号强度42。除此之外,氧化镁(MgO)掺杂光纤由于制造方法相对简单,而且纤维可设计得与SMF纤维的尺寸相匹配,近年来获得广泛的关注。法国的Blanc等43-45对MgO掺杂光纤的制备流程、散射性能进行了一系列的研究。拉制过程中,温度较高,Si和碱土离子的分离产生富含MgO球形颗粒的化合物,该化合物在纤维中拉长,颗粒尺寸在几纳米到几百纳米水平46。其中纳米颗粒的尺寸直接决定了诱导的弹性散射和光学损耗,与SMF-28相比,20~160 nm的Mg纳米颗粒纤维增强了46.1 dB~47.5 dB的后向散射,但光损耗为292~298 dB/m47-48,而直径为100 nm的颗粒的后向散射增强强度为32.3 dB~45.2 dB,损失为27.8~33.1 dB/m49-52。最近,MgO基掺杂光纤的损耗被优化,衰减降低为14.3 dB/m,散射增量为48.9 dB,可以实现2.4~4.0倍的传感长度扩展53。除此之外,加拿大的Fuertes等54-56研究了Ga、Ba掺杂对光纤散射的影响,并在预制和光纤制造过程中改变纳米颗粒的特征,如颗粒分布大小、形态和密度,来进一步调控散射光强度54,光纤的损耗可以降低至0.1~0.2 dB/m,传感距离可延长至数百米,性能要优于Mg基掺杂光纤。荷兰的Wang等57开始开发具备传感性能的Au掺杂光纤器件,其性能与普通FBG接近,这促进未来Au掺杂光纤传感器件的发展。

纳米粒子掺杂光纤的散射增强具有连续性,散射增强更明显,可以通过光纤拉制直接制备,保证了光纤的力学性能。但高散射增强同时带来的是损耗剧烈增加,纳米掺杂光纤的损耗普遍高于辐照和微结构2~3个数量级,在提升分布式传感器系统信噪比的同时,缩短了传感距离,因此纳米掺杂散射增强光纤可适用于短距离的传感领域。由于辐照、微结构和纳米粒子掺杂方式均是通过增加光纤中的散射光实现散射增强,带来的必然结果是增加了光纤中的损耗,在增强散射的同时一定程度降低了传感长度。

综上,通过增加光纤中的缺陷数量和提升不均匀性实现散射增强的方式可以获得令人满意的效果,近年来这种散射增强光纤也开始应用到工程实践中,表1展示了近年来通过此方式实现的散射控制效果。根据图6所示的信噪比来估算散射增强光纤的后向瑞利散射谱,将单模光纤中瑞利散射光的极限-60 dB作为探测极限参考值,假设入射光功率为1 mW,单模散射光系数为10-3,根据得到的散射谱与探测极限的加点估算传感极限距离。与单模光纤(损耗为0.2 dB/km)的极限传感长度150 km对比,辐照、微结构和掺杂方式增强光纤中的散射均会缩短传感系统的传感距离,这归因于增大散射强度带来了损耗。其中辐照和微结构方式的最长传感距离在几十到上百千米,可以在这个长度范围内提高分布传感系统的信噪比。掺杂方式的最大长度为10 m,适用于短距离下分布式传感信噪比的提升。

表 1. 利用增加散射强度方式的散射增强光纤发展现状

Table 1. Current development status of scattering enhanced fiber by increasing scattering intensity

CategoryConcrete methodYearScattering enhancement /dBLossMax length /kmRef.
IrradiationUV exposure20152015
202270.5 dB/km74.09
202337.316
Radiation20112.79 dB/km17
201668.8 dB/km18
MicrostructureIdentical weak FBG array2016>3020
Chirped weak FBG array2017~100.4 dB/km100.021
Random weak FBG array2019300.15 dB/m0.422
FBG array by femtosecond laser20174015-41 dB/m0.00526
Weak Fresnel reflection point20195/15/3027-29
2022263 dB/m0.0230
Fabry Perot cavity array20152031
Nano reflector2020350.6 dB/km79.232
20223033
20182038
Doping98%(mole fraction)GeO2202229.242
MgO2018-202146.1-47.5292-298 dB/m0.000247-48
32.3-45.227.8-33.1 dB/m0.0014952
202248.914.3 dB/m0.00353
Ga202326.4-43.80.1-5.1 dB/m0.0154-55
Ba202335.4-44.91.2-6.9 dB/m0.0156

查看所有表

图 6. 各种方式制备散射增强光纤的散射谱估计

Fig. 6. Scattering spectrum estimation of scattering enhanced fibers prepared by various methods

下载图片 查看所有图片

3 基于增强光纤后向收集系数的散射增强光纤

除了利用直接增大光纤散射系数的方式增强散射,还可以考虑控制光纤中散射后向收集能力的方式实现散射增强。这种方式可以避免较大损耗的产生,保持传感光纤的传感距离不受限制。后向收集系数S与光纤数值孔径(NA)和模场半径(w0)有关,直接受到光纤的相对折射率差(Δ)和半径(r)控制58-60,即

S=341(w0/r)2V2NA2nco2αs=8π33λ4(nco2-1)kBβTTf

式中:Tf为假想温度;nco为纤芯折射率;V为归一化频率;kB为波尔兹曼常数;βT为绝热压缩比。结合式(1),固定光纤中的散射噪声为-60 dB、光纤长度为1 km,光纤的散射光信噪比与半径和折射率差的关系如图7所示。在小半径和高折射率差下,散射信噪比增大,说明控制半径和折射率可有效增强光纤中的散射信号。光纤中的散射系数(αs)与光纤拉制过程的热历史参数假想温度(Tf)和纤芯折射率(nco)密切相关,其他参数为常数。光纤中的损耗由散射损耗系数与波长的四次方的比值计算得到,因此忽略折射率的微小改变,在改变半径和折射率时,光纤中损耗几乎不改变。

图 7. 光纤中的信噪比与半径和相对折射率差的关系

Fig. 7. Relationship among signal-to-noise ratio, radius, and relative refractive index difference in optical fibers

下载图片 查看所有图片

光纤半径的改变直接带来的是模场半径(R)的变化,折射率的改变直接带来的是数值孔径(NA)的变化。光纤中数值孔径和模场半径与散射收集系数的关系如图8所示。增大光纤数值孔径是增加后向散射光收集系数的主要方式,数值孔径的增大意味着光纤允许更多的散射光在后向上被收集,如图8(a)所示。光纤中的后向散射系数与光纤的模场密度相关,如图8(b)所示,模场半径越小,后向散射收集系数越大,说明减小模场半径可以对散射收集系数实现控制。因此,通过这两种方式可以有效增大光纤中的散射,本质上可以不带来附加的损耗。

图 8. 光纤散射后向收集系数模型。(a)数值孔径;(b)模场半径

Fig. 8. Model of backward collection coefficient of fiber scattering. (a) Numerical aperture; (b) mode-field radius

下载图片 查看所有图片

采用增大数值孔径方式增强散射的光纤有聚合物光纤和多模光纤。聚合物光纤的直径能到1 mm,更大的散射截面61可收集更多的散射光,获得比普通石英光纤高31 dB的散射增强62,但聚合物光纤本身的吸收损耗和散射损耗大于石英光纤,损耗达到9.2~15 dB/km63,这说明聚合物光纤的材料增强了光纤的散射能力,因此聚合物光纤传感长度仅为数百米64-65,难以满足长距离传感需求。在石英光纤中多模光纤相对于单模光纤具有更大的数值孔径和较高的非线性阈值功率,具有更大的散射光俘获系数和支持更高的注入泵浦功率66,因此广泛应用于分布式传感中的分布式温度传感器(DTS)67-68、分布式声学传感器(DAS)69、分布式振动传感器(DVS)70以及复合传感器(DAS-DTS)71。对多模光纤结构的掺杂可以优化分布式传感性能,如图9(a)所示,在多模光纤纤维芯中掺杂氟元素可以获得更强的非线性效应,自发斯托克斯信号比传统的多模光纤高出1.5~2.4倍,较强的散射信号使信号采集和数据处理难度更小,从而提高了温度灵敏度、精度和分辨率72。另外,通过进一步提高光纤芯中锗掺杂含量来增大数值孔径,从而提高后向散射光信号的采集能力,可增大后向散射强度2~3倍,衰减系数为0.29~0.35 dB/km73。除了使用多模光纤,多芯光纤中纤芯NA从0.13增大到0.21,可以使后向散射增加3 dB74,获得相同的效果,然而这种光纤的衰减通常超过1 dB/km。多模光纤由于结构特点75-77[图9(a)]在高阶模式上会带来大的辐射损耗且在弯曲下更剧烈,信号随着光纤向后传播,能量变弱的速度较快。如图9(b)所示,传播距离大于20 km时,信号能量就很微弱,前端信号质量好,后端信号质量差,这严重影响到后端信号的信噪比,削弱分布式传感系统的传感长度67。多模光纤的模式色散大于单模光纤中的色散,在长距离传感中会严重劣化系统的空间分辨率78,这是多模光纤长距离应用面临的另一问题。

图 9. 多模光纤增强后向散射收集系数。(a)多模光纤结构;(b)散射谱

Fig. 9. Multimode fiber enhances the backscattering collection coefficient. (a) Structure of multimode fiber; (b) scattering spectrum

下载图片 查看所有图片

本课题组从光纤轴向折射率和半径分布入手,控制光纤长度方向上的俘获系数,提出一种长距离散射增强单模光纤——超长绝热锥形单模散射增强光纤(ULTF)79,通过增加光纤散射后向收集能力来增强散射,不带来额外的损耗。ULTF的一个案例如下:光纤长度为12.6 km,半径从4.50 μm线性单调递减至3.00 μm,光纤各个位置的归一化频率相同,均为2.166,ULTF的散射谱如图10(a)所示。长锥光纤的后向散射增强为1.89 dB,后向散射光谱的平坦度(最大和最小后向散射谱之差)为0.10 dB,这对于1.89 dB的后向散射增强值来说是一个小值,因此可以认为此时光纤任何位置接收的后向散射光强度相等,即等信噪比。ULTF在不同小端纤芯半径下的最佳长度(Lo)和瑞利后向散射增强(ΔRS)如图10(b)所示,ULTF可在45.00 km传感长度上实现7.00 dB的散射增强,同时各点散射光强度一致。应用ULTF这一特性,可有效提升分布式光纤传感系统长距离传感的性能,在长距离传感中实现更高精度的监测。

图 10. 超长绝热锥形光纤设计增强散射。(a)半径为4.5~3 μm、长度为12.5 km的ULTF的散射谱;(b)不同小端半径的散射增强结果和光纤长度

Fig. 10. Design of ultra long adiabatic tapered fiber to enhance scattering. (a) Scattering spectra of ULTF with a length of 12.5 km and radius of 4.5-3 μm; (b) scattering enhancement results and fiber length for different small end radius

下载图片 查看所有图片

在此基础上,设计并拉制ULTF用于验证散射增强光纤设计的正确性,光纤具体参数如图11(a)所示。设计的锥形光纤由两部分组成:第一部分为SMF;第二部分是ULTF。受到折射率控制工艺的限制,拉制光纤的相对折射率差是恒定的,为0.33%。在光纤拉制过程中,通过控制光纤的拉拔速度来控制拉拔锥形光纤的半径。实际拉制的锥形光纤的直径如图11(a)所示,与理论值相比,ULTF直径的最大偏差为2.5 μm,误差约为2.5%,可以忽略不计。ULTF的散射测试结果如图11(b)所示,0~1 km结果为第一段SMF的散射值,散射随长度线性改变,SMF区域的损耗为0.24 dB/km,与商用光纤的损耗一致。将SMF散射结果等斜率延长[图11(b)的黑色点划线],与第二部分的锥形光纤散射测试结果对比。测试散射结果和理论散射结果均大于SMF的散射结果,这意味着锥形光纤实现了瑞利散射的增强。理论和实际锥形光纤的散射增强功率分别为0.37 dB和0.24 dB,如图11(c)所示,理论值和测试值存在差异,这归因于拉制过程中光纤折射率的改变。总体而言,超长锥形光纤设计实现了瑞利散射的增强,且不带来额外的损耗。

图 11. 超长绝热锥光纤的参数变化。(a)半径分布;(b)散射谱;(c)散射增强值

Fig. 11. Parameter changes of ULTF. (a) Radius distribution; (b) scattering spectrum; (c) scattering enhancement value

下载图片 查看所有图片

ULTF还具有调控FBG阵列反射光的能力,如图12所示。ULTF纤芯的有效折射率在长度方向上具有单调变化的分布,因此采用相同光栅写入系统制备的FBG阵列的中心波长具有与有效折射率相同的分布。将靠近末端FGB中心波长的激光打入锥形光纤FBG阵列中,可有效抑制阵列中的阴影效应,增强末端FBG反射信号,从而增加阵列可容纳FBG的数量。对锥形光纤折射率分布、FBG参数和激光源进行优化,可实现各点FBG反射信号强度近乎一致的设计,实现各点信噪比一致。

图 12. 锥形FBG阵列。(a)示意图;(b)光谱;(c)散射谱

Fig. 12. Tapered FBG array. (a) Schematic; (b) spectra; (c) scattering spectra

下载图片 查看所有图片

综上,控制光纤折射率和半径可以有效增强散射收集能力,提高接收的后向散射强度。对比各种光纤的散射增强性能,塑料光纤由于本身存在损耗,光纤散射增强了31 dB,最大传感距离仅有6.6 km62,多模光纤结构特点导致普遍存在的高阶模式损耗大于单模光纤的损耗,3 dB散射增强下传感长度能达到100 km74,但都小于单模光纤的传感长度150 km。本课题组提出的超长绝热锥形单模光纤不额外增加光纤中的损耗,预期能达到7 dB的散射增强,传感长度可达到154.2 km,可以突破单模光纤的传感距离极限,增强分布式传感系统的性能。

4 结论和展望

各种散射控制方式的对比如图13所示。通过增大光纤散射系数方式增强光纤中的瑞利散射不可避免地增加了光纤中的损耗,辐照、微结构和掺杂方式均会导致分布式传感距离减小。其中:辐照方式可以在几十千米传感距离上有效提升分布式系统的信噪比,优化分布式系统的其他性能,如灵敏度和分辨率;微结构方式控制光纤中的散射具有离散特点,在增强散射信噪比的同时会影响传感的空间分辨率;掺杂方式在上百米的短距离上增强信噪比十分有效,可满足短距离高性能的分布式传感需求。增强光纤后向散射收集能力方式是通过优化光纤设计参数实现的,理论上不会带来额外的损耗,但光纤参数的改变会导致光强其他性能的改变,如POF的吸收损耗增大和MMF的高阶模式损耗等问题,散射增强光纤的传感距离仍小于单模光纤。本课题组提出的超长锥形单模光纤可增加光纤的散射,但是不带来额外的损耗,突破了单模光纤的传感极限,实现上千米传输距离上的信噪比增加,对于超长距离的分布式传感需求具有借鉴意义。

图 13. 各种散射增强光纤的增强方式对比

Fig. 13. Comparison of various scattering enhanced fiber enhancement methods

下载图片 查看所有图片

散射增强光纤能有效增强分布式传感系统的信噪比,带来系统空间分辨率、传感精度的提升,并逐渐开始应用到工程实践中。散射增强光纤未来将朝着更高性能、更多功能和更多应用的方向发展:

1)光纤散射增强技术的开发。散射增强光纤的潜在优势可以极大地提升分布式传感系统的传感性能,特别是为各种分布式传感系统定制传感光纤,满足不同的传感需求,如传感长度、空间分辨率等。现阶段各种散射增强方式均存在各自的局限,基于现有的传感技术继续优化增强方案是持续的工作,同时开发新的散射增强技术,丰富散射控制方法,为散射控制应用提供更多选择也是一个重要的研究方向。

2)散射增强光纤的其他性能开发。散射增强光纤的散射增强能力是分布式光纤的需求,但分布式系统往往有许多限制,比如布里渊传感系统的阈值问题,激光器系统中的非线性问题,研究散射增强光纤的其他特性(偏振、色散、非线性等),丰富传感光纤的功能,进一步开发传感光纤在其他器件、系统的应用,将传感光纤发展为器件光纤,进一步扩大传感光纤的内核,可向集成化、功能化光纤发展。

3)散射增强光纤的应用开发。散射增强光纤的目的是增强光纤中的散射,优化分布式系统的性能,从而提升实际应用环境中的监测性能,将传感光纤技术向工程应用转化,形成研产循环,才能为传感光纤的开发提供源源不断的动力,推动散射增强光纤的长远发展。

参考文献

[1] 赵丽娟, 张旭哲, 徐志钮, 等. 分布式声波传感系统中IQ解调方法的影响因素[J]. 光学学报, 2023, 43(14): 1428001.

    Zhao L J, Zhang X Z, Xu Z N, et al. Influencing factors of IQ demodulation method in distributed acoustic sensors[J]. Acta Optica Sinica, 2023, 43(14): 1428001.

[2] 苑立波, 童维军, 江山, 等. 我国光纤传感技术发展路线图[J]. 光学学报, 2022, 42(1): 0100001.

    Yuan L B, Tong W J, Jiang S, et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 2022, 42(1): 0100001.

[3] Nazarathy M, Newton S A, Giffard R P, et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24-38.

[4] Wang Z N, Zeng J J, Li J, et al. Ultra-long phase-sensitive OTDR with hybrid distributed amplification[J]. Optics Letters, 2014, 39(20): 5866-5869.

[5] Liu Q W, Fan X Y, He Z Y. Time-gated digital optical frequency domain reflectometry with 1.6-m spatial resolution over entire 110-km range[J]. Optics Express, 2015, 23(20): 25988-25995.

[6] Loranger S, Parent F, Lambin-Iezzi V, et al. Enhancement of Rayleigh scatter in optical fiber by simple UV treatment: an order of magnitude increase in distributed sensing sensitivity[J]. Proceedings of SPIE, 2016, 9744: 97440E.

[7] ReddingB, MurrayM J, DonkoA, et al. Low-noise distributed acoustic sensing using ultra-low- loss, enhanced-backscatter fiber[C]//Optical Fiber Sensors Conference 2020 Special Edition, June 8-12, 2020, Washington, DC. Washington, DC: Optica Publishing Group, 2021: T3.11.

[8] Parent F, Loranger S, Mandal K K, et al. Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers[J]. Biomedical Optics Express, 2017, 8(4): 2210-2221.

[9] Westbrook P S, Feder K S, Kremp T, et al. Enhanced optical fiber for distributed acoustic sensing beyond the limits of Rayleigh backscattering[J]. iScience, 2020, 23(6): 101137.

[10] Brinkmeyer E. Analysis of the backscattering method for single-mode optical fibers[J]. Journal of the Optical Society of America, 1980, 70(8): 1010-1012.

[11] 杨中民, 徐时清, 杨建虎, 等. 紫外光致折射率变化的光敏玻璃的研究进展[J]. 硅酸盐学报, 2003, 31(10): 981-985, 990.

    Yang Z M, Xu S Q, Yang J H, et al. Research progress of photosensitive glass with a modulation of refractive index induced by the exposure to UV light[J]. Journal of the Chinese Ceramic Society, 2003, 31(10): 981-985, 990.

[12] 江俊峰, 张以谟, 刘铁根, 等. 掺锗光纤的光敏机理及增敏方法的研究现状与发展[J]. 光学技术, 2003, 29(2): 131-135.

    Jiang J F, Zhang Y M, Liu T G, et al. Review on photosensitivity mechanisms of Ge-doped optical fibers and methods for enhancing photosensitivity[J]. Optical Technology, 2003, 29(2): 131-135.

[13] KashyapR. Fiber Bragg gratings[M]. New York: Academic Press, 2009: 18-25.

[14] Brochu G, LaRochelle S, Ayotte N. Dynamics of hydrogen diffusion as a key component of the photosensitivity response of hydrogen-loaded optical fibers[J]. Journal of Lightwave Technology, 2009, 27(15): 3123-3134.

[15] Loranger S, Gagné M, Lambin-Iezzi V, et al. Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre[J]. Scientific Reports, 2015, 5: 11177.

[16] Du C, Fu C L, Li P F, et al. High-spatial-resolution strain sensor based on Rayleigh-scattering-enhanced SMF using direct UV exposure[J]. Journal of Lightwave Technology, 2023, 41(5): 1566-1570.

[17] Wen J X, Peng G D, Luo W Y, et al. Gamma irradiation effect on Rayleigh scattering in low water peak single-mode optical fibers[J]. Optics Express, 2011, 19(23): 23271-23278.

[18] Jin J, Zhang H S, Liu J X, et al. Distributed temperature sensing based on Rayleigh scattering in irradiated optical fiber[J]. IEEE Sensors Journal, 2016, 16(24): 8928-8935.

[19] Guo H Y, Tang J G, Li X F, et al. On-line writing identical and weak fiber Bragg grating arrays[J]. Chinese Optics Letters, 2013, 11(3): 030602.

[20] Zaitsev I A, Butov O V, Voloshin V V, et al. Optical fiber with distributed Bragg-type reflector[J]. Journal of Communications Technology and Electronics, 2016, 61(6): 639-645.

[21] WestbrookP S, FederK S, OrtizR M, et al. Kilometer length, low loss enhanced back scattering fiber for distributed sensing[C]//2017 25th Optical Fiber Sensors Conference (OFS), April 24-28, 2017, Jeju, Republic of Korea. New York: IEEE Press, 2017.

[22] Monet F, Loranger S, Lambin-Iezzi V, et al. The ROGUE: a novel, noise-generated random grating[J]. Optics Express, 2019, 27(10): 13895-13909.

[23] 李政颖, 孙文丰, 王洪海. 基于光频域反射技术的超弱反射光纤光栅传感技术研究[J]. 光学学报, 2015, 35(8): 0806003.

    Li Z Y, Sun W F, Wang H H. Research on the ultra-weak reflective fiber Bragg grating sensing technology based on optical frequency domain reflection technology[J]. Acta Optica Sinica, 2015, 35(8): 0806003.

[24] Erdogan T, Mizrahi V, Lemaire P J, et al. Decay of ultraviolet-induced fiber Bragg gratings[J]. Journal of Applied Physics, 1994, 76(1): 73-80.

[25] 董欣然, 王子安, 曾理, 等. 飞秒激光刻写布拉格光栅反射光谱特性研究[J]. 中国激光, 2023, 50(19): 1906001.

    Dong X R, Wang Z A, Zeng L, et al. Reflection spectral characteristics of Bragg gratings fabricated via femtosecond laser phase mask technique[J]. Chinese Journal of Lasers, 2023, 50(19): 1906001.

[26] Yan A D, Huang S, Li S, et al. Distributed optical fiber sensors with ultrafast laser enhanced Rayleigh backscattering profiles for real-time monitoring of solid oxide fuel cell operations[J]. Scientific Reports, 2017, 7: 9360.

[27] 艾凡. 基于离散增强光纤的分布式传感关键技术与应用研究[D]. 武汉: 华中科技大学, 2019: 47-60.

    AiF. Investigation on Discrete enhanced fiber based distributed sensing technologies and their applications[D]. Wuhan: Huazhong University of Science & Technology of China, 2019: 47-60.

[28] 刘德明, 贺韬, 许志杰, 等. 新型微结构光纤分布式声波传感技术及应用[J]. 应用科学学报, 2020, 38(2): 296-309.

    Liu D M, He T, Xu Z J, et al. New type of microstructure-fiber distributed acoustic sensing technology and its applications[J]. Journal of Applied Sciences, 2020, 38(2): 296-309.

[29] 张威. 基于纵向微结构光纤的高空间分辨分布式光纤传感技术研究[D]. 武汉: 华中科技大学, 2020: 23-45.

    ZhangW. Research on high spatial resolution distributed optical fiber sensing technology based on longitudinal microstructure fiber[D]. Wuhan: Huazhong University of Science and Technology, 2020: 23-45.

[30] Meng Y J, Fu C L, Chen L, et al. Submillimeter-spatial-resolution φ‑OFDR strain sensor using femtosecond laser induced permanent scatters[J]. Optics Letters, 2022, 47(23): 6289-6292.

[31] Chen Z, Yuan L, Hefferman G, et al. Ultraweak intrinsic Fabry-Perot cavity array for distributed sensing[J]. Optics Letters, 2015, 40(3): 320-323.

[32] Peng Z Q, Wen H Q, Jian J N, et al. Identifications and classifications of human locomotion using Rayleigh-enhanced distributed fiber acoustic sensors with deep neural networks[J]. Scientific Reports, 2020, 10: 21014.

[33] Li W C, Liu J X, Li S C, et al. In-fiber integrated quasi-distributed temperature sensor array with high spatial resolution for silicon nitride igniter[J]. IEEE Sensors Journal, 2022, 22(10): 9426-9432.

[34] Esposito F, Ranjan R, Campopiano S, et al. Arc-induced long period gratings from standard to polarization-maintaining and photonic crystal fibers[J]. Sensors, 2018, 18(3): 918.

[35] Rego G, Ivanov O. Investigation of the mechanisms of formation of long-period gratings arc-induced in pure-silica-core fibres[J]. Optics Communications, 2011, 284(8): 2137-2140.

[36] 刘学静, 杨远洪, 张晓哲, 等. 基于电弧放电的相移光纤布拉格光栅制作技术[J]. 中国激光, 2013, 40(5): 0505002.

    Liu X J, Yang Y H, Zhang X Z, et al. Fabrication technology of phase shifted fiber Bragg grating with an arc discharge technique[J]. Chinese Journal of Lasers, 2013, 40(5): 0505002.

[37] Rego G. Fibre optic devices produced by arc discharges[J]. Journal of Optics, 2010, 12(11): 113002.

[38] Zhao Y S, Huang S, Cui Z R, et al. Electric-arc-induced strength-controllable weak polarization mode coupling in polarization maintaining fiber[J]. Applied Optics, 2018, 57(22): 6446-6450.

[39] Friebele E J, Griscom D L, Sigel G H,. Defect centers in a germanium-doped silica-core optical fiber[J]. Journal of Applied Physics, 1974, 45(8): 3424-3428.

[40] Tsai T E, Saifi M A, Friebele E J, et al. Correlation of defect centers with second-harmonic generation in Ge-doped and Ge–P-doped silica-core single-mode fibers[J]. Optics Letters, 1989, 14(18): 1023-1025.

[41] Mahmoud F, Müller H R, Mörl K, et al. Scattering loss in Nd-doped silica based optical fibers[J]. Optik, 2002, 113(10): 421-424.

[42] Chaccour L. Rayleigh backscattered signal enhancement in highly GeO2-doped-core silica fibers[J]. IEEE Photonics Technology Letters, 2022, 34(6): 345-348.

[43] Blanc W, Guillermier C, Dussardier B. Composition of nanoparticles in optical fibers by secondary ion mass spectrometry[J]. Optical Materials Express, 2012, 2(11): 1504-1510.

[44] Blanc W, Mauroy V, Nguyen L, et al. Fabrication of rare earth-doped transparent glass ceramic optical fibers by modified chemical vapor deposition[J]. Journal of the American Ceramic Society, 2011, 94(8): 2315-2318.

[45] Blanc W, Dussardier B. Formation and applications of nanoparticles in silica optical fibers[J]. Journal of Optics, 2016, 45(3): 247-254.

[46] Tosi D, Molardi C, Sypabekova M, et al. Enhanced backscattering optical fiber distributed sensors: tutorial and review[J]. IEEE Sensors Journal, 2021, 21(11): 12667-12678.

[47] Ayupova T, Shaimerdenova M, Korganbayev S, et al. Fiber optic refractive index distributed multi-sensors by scattering-level multiplexing with MgO nanoparticle-doped fibers[J]. IEEE Sensors Journal, 2020, 20(5): 2504-2510.

[48] Korganbayev S, Shaimerdenova M, Ayupova T, et al. Refractive index sensor by interrogation of etched MgO nanoparticle-doped optical fiber signature[J]. IEEE Photonics Technology Letters, 2019, 31(15): 1253-1256.

[49] Beisenova A, Issatayeva A, Iordachita I, et al. Distributed fiber optics 3D shape sensing by means of high scattering NP-doped fibers simultaneous spatial multiplexing[J]. Optics Express, 2019, 27(16): 22074-22087.

[50] Beisenova A, Issatayeva A, Korganbayev S, et al. Simultaneous distributed sensing on multiple MgO-doped high scattering fibers by means of scattering-level multiplexing[J]. Journal of Lightwave Technology, 2019, 37(13): 3413-3421.

[51] Beisenova A, Issatayeva A, Sovetov S, et al. Multi-fiber distributed thermal profiling of minimally invasive thermal ablation with scattering-level multiplexing in MgO-doped fibers[J]. Biomedical Optics Express, 2019, 10(3): 1282-1296.

[52] Sypabekova M, Korganbayev S, Blanc W, et al. Fiber optic refractive index sensors through spectral detection of Rayleigh backscattering in a chemically etched MgO-based nanoparticle-doped fiber[J]. Optics Letters, 2018, 43(24): 5945-5948.

[53] Tosi D, Molardi C, Blanc W. Rayleigh scattering characterization of a low-loss MgO-based nanoparticle-doped optical fiber for distributed sensing[J]. Optics & Laser Technology, 2021, 133: 106523.

[54] Fuertes V, Grégoire N, Labranche P, et al. Engineering nanoparticle features to tune Rayleigh scattering in nanoparticles-doped optical fibers[J]. Scientific Reports, 2021, 11: 9116.

[55] Fuertes V, Grégoire N, Labranche P, et al. Tunable Rayleigh scattering in low-loss Sr-based nanoparticle-doped optical fibers: controlling nanoparticle features throughout preform and fiber fabrication[J]. Journal of Alloys and Compounds, 2023, 940: 168928.

[56] Fuertes V, Grégoire N, Labranche P, et al. Customizing nanoparticle characteristics in Ba-rich nanoparticle-doped optical fibers to tune Rayleigh scattering[J]. Journal of Non-Crystalline Solids, 2023, 614: 122398.

[57] Wang X, Benedictus R, Groves R M. Spectral characteristics of gold nanoparticle doped optical fibre under axial strain[J]. Scientific Reports, 2022, 12: 16593.

[58] Wang Z, Ren G B, Lou S Q, et al. Loss properties due to Rayleigh scattering in different types of fiber[J]. Optics Express, 2003, 11(1): 39-47.

[59] Andreev V A, Burdin V A, Troshin A V. Analysis of spectral characteristics of Rayleigh scattering parameters for different types of single-mode fibers[J]. Proceedings of SPIE, 2006, 6277: 627708.

[60] Pournoury M, Moon D S, Nazari T, et al. Low scattering loss fiber with segmented-core and depressed inner cladding structure[J]. Optics Communications, 2014, 317: 13-17.

[61] Kreger S T, Sang A K, Gifford D K, et al. Distributed strain and temperature sensing in plastic optical fiber using Rayleigh scatter[J]. Proceedings of SPIE, 2009, 7316: 73160A.

[62] Dengler S A, Engelbrecht R, Schmauss B. Absolute spectral backscatter measurements of large-core multimode PMMA polymer optical fibers[J]. Optics Express, 2021, 29(21): 34629-34640.

[63] Sugita T. Optical time-domain reflectometry of bent plastic optical fibers[J]. Applied Optics, 2001, 40(6): 897-905.

[64] LenkeP, LiehrS, KrebberK. Improvements of the distributed strain sensor based on optical time domain reflectometry measurement in polymer optical fibers[C]//17th International Conference on Plastic Optical Fibers (POF 2008), August 25-28, 2008, Santa Clara, California, USA. [S.l.: s.n.], 2008.

[65] LiehrS, LenkeP, WendtM, et al. Perfluorinated graded-index polymer optical fibers for distributed measurement of strain[C]//17th International Conference on Plastic Optical Fibers (POF 2008), August 25-28, 2008, Santa Clara, California, USA. [S.l.: s.n.], 2008.

[66] Mao Y, Ashry I, Hveding F, et al. Simultaneous distributed acoustic and temperature sensing using a multimode fiber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(4): 5600207.

[67] 周子超, 崔文达, 奚小明, 等. 高功率光纤激光器纤芯温度在线测量技术及其应用研究进展[J]. 光学学报, 2023, 43(17): 1714006.

    Zhou Z C, Cui W D, Xi X M, et al. Real-time temperature measurement of high-power fiber laser core and its applications[J]. Acta Optica Sinica, 2023, 43(17): 1714006.

[68] Wang M, Wu H, Tang M, et al. Few-mode fiber based Raman distributed temperature sensing[J]. Optics Express, 2017, 25(5): 4907-4916.

[69] Chen M M, Masoudi A, Parmigiani F, et al. Distributed acoustic sensor based on a two-mode fiber[J]. Optics Express, 2018, 26(19): 25399-25407.

[70] Lu L D, Su X C, Zhang C L, et al. A novel distributed vibration sensor based on fading noise reduction in multi-mode fiber[J]. Sensors, 2022, 22(20): 8028.

[71] Ekechukwu G, Sharma J. Degradation analysis of single-mode and multimode fibers in a full-scale wellbore and its impact on DAS and DTS measurements[J]. IEEE Sensors Journal, 2023, 23(9): 9287-9300.

[72] Zhang R, Li X B, Xia T, et al. Optimized design on multimode fiber with enhanced spontaneous Raman scattering for distributed temperature sensing[J]. Optical Engineering, 2012, 51(8): 084401.

[73] GuoJ T, XiaT, ZhangR, et al. A novel multimode fiber for distributed temperature sensing based on anti-stokes Raman scattering[C]//2012 Photonics Global Conference (PGC), December 13-16, 2012, Singapore. New York: IEEE Press, 2013.

[74] Westbrook P S, Feder K S, Kremp T, et al. Integrated optical fiber shape sensor modules based on twisted multicore fiber grating arrays[J]. Proceedings of SPIE, 2014, 8938: 89380H.

[75] Kashima N, Uchida N, Ishida Y. Excess loss caused by the outer layer in a multimode step-index optical fiber: theory[J]. Applied Optics, 1977, 16(10): 2732-2737.

[76] Opielka D, Rittich D. Transmission loss caused by an angular misalignment between two multimode fibers with arbitrary profile exponents[J]. Applied Optics, 1983, 22(7): 991-994.

[77] van Etten W, Lambo W, Simons P. Loss in multimode fiber connections with a gape[J]. Applied Optics, 1985, 24(7): 970-976.

[78] Li J, Zhang M J. Physics and applications of Raman distributed optical fiber sensing[J]. Light: Science & Applications, 2022, 11: 128.

[79] Tan T, Duan C, Tian Y, et al. Scattering characteristics of over 3 km long adiabatic tapered single mode fiber[J]. Journal of Lightwave Technology, 2023, 41(13): 4130-4136.

谭滔, 田野, 张建中. 面向分布式传感的散射增强光纤研究进展[J]. 光学学报, 2024, 44(1): 0106010. Tao Tan, Ye Tian, Jianzhong Zhang. Research Progress in Scattering Enhanced Optical Fibers for Distributed Sensing[J]. Acta Optica Sinica, 2024, 44(1): 0106010.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!