Journal of Advanced Dielectrics, 2021, 11 (6): 2130001, Published Online: Feb. 21, 2022  

Effect of doping in multiferroic BFO: A review

Author Affiliations
Research Centre of Physics, Fatima College (Autonomous), Madurai 625018, Tamil Nadu, India
Abstract
Bismuth ferrite (BFO) nanostructures and thin films have gained attraction as suitable candidates for energy storage and energy conversion due to their high energy storage efficiency, temperature stability and low dielectric loss. Electrical properties of such multiferroic materials are tailored by ferroelectric and ferromagnetic constituents and have opened up amazing avenues in electrochemical supercapacitor and photovoltaic applications. Dopants play a significant role in optimizing the magnetic and dielectric properties of such materials owing to suitable applications. This review highlights the scientific advancements reported in BFO nanostructures for energy applications by optimizing their magnetic and dielectric properties. This paper starts with a brief introduction of BFO and a discussion on the effects of various dopants by different synthesis techniques, and their effects on the magnetic and dielectric properties are also portrayed. Eventually, this review summarizes the various doping effects, which paves way for future research on this multiferroic material.
References

[1] CorreiaT. M.,McMillenM.,RokoszM. K.,WeaverP. M.,GreggJ. M.,ViolaG. andCainM. G.,A lead-free and high-energy density ceramic for energy storage applications,J. Am. Ceram. Soc.96,2699(2013),https://doi.org/10.1111/jace.12508.

[2] HaoX.,A review on the dielectric materials for high energy-storage application,J. Adv. Dielectr.03,1330001(2013),https://doi.org/10.1142/s2010135x13300016.

[3] SuzukiY.,SuzukiT. S.,HiraoK.,TsuchiyaT.,NagataH. andCrossJ. S.,Advanced Ceramic Technologies & Products(Springer Science & Business Media,Berlin,2012).

[4] SmallmanR. E. andBishopR. J.,Modern Physical Metallurgy and Materials Engineering(Elsevier,Amsterdam,1999).

[5] WangJ.,ZhengH.,MaZ.,PrasertchoungS.,WuttigM.,DroopadR.,YuJ.,EisenbeiserK. andRameshR.,Epitaxial BiFeO3 thin films on Si,Appl. Phys. Lett.85,2574(2004),https://doi.org/10.1063/1.1799234.

[6] KumariB.,MandalP. R. andNathT. K.,Magnetic, magnetocapacitance and dielectric properties of BiFeO3 nanoceramics,Adv. Mater. Lett.5,84(2014),https://doi.org/10.5185/amlett.2013.fdm.36.

[7] UedaK.,TabataH. andKawaiT.,Coexistence of ferroelectricity and ferromagnetism in BiFeO3–BaTiO3 thin films at room temperature,Appl. Phys. Lett.75,555(1999),https://doi.org/10.1063/1.124420.

[8] Mahesh KumarM.,SrinivasA. andSuryanarayanaS. V.,Structure property relations in BiFeO3/BaTiO3 solid solutions,J. Appl. Phys.87,855(2000),https://doi.org/10.1063/1.371953.

[9] Durga RaoT.,KarthikT. andAsthanaS.,Investigation of structural, magnetic and optical properties of rare earth substituted bismuth ferrite,J. Rare Earths31,370(2013),https://doi.org/10.1016/S1002-0721(12)60288-9.

[10] KhomchenkoV. A.,TroyanchukI. O.,KovetskayaM. I.,KopcewiczM. andPiaxãoJ. A.,Effect of Mn substitution on crystal structure and magnetic properties of Bi1−xPrxFeO3 multiferroics,J. Phys. D, Appl. Phys.45,045302(2012),https://doi.org/10.1088/0022-3727/45/4/045302.

[11] LazenkaV. V.,ZhangG.,VanackenJ.,MakoedI. I.,RavinskiA. F. andMoshchalkovV. V.,Structural transformation and magnetoelectric behavior in Bi1−xGdxFeO3multiferroics,J. Phys. D, Appl. Phys.45,125002(2012),https://doi.org/10.1088/0022-3727/45/12/125002.

[12] WuY.-J.,ZhangJ.,ChenX.-K. andChenX.-J.,Phase evolution and magnetic property of Bi1−xHoxFeO3 powders,Solid State Commun.151,1936(2011),https://doi.org/10.1016/j.ssc.2011.09.020.

[13] DaiH. Y.,LiuH. Z.,DuJ. F.,LiT.,XueR. Z. andChenZ. P.,Effect of sintering temperature on the microstructure, electrical, and magnetic properties of Bi0.85Eu0.15FeO3 ceramics,J. Supercond. Nov. Magn.27,2105(2014),https://doi.org/10.1007/s10948-014-2558-4.

[14] KumarA. andVarshneyD.,Crystal structure refinement of Bi1−xNdxFeO3 multiferroic by the Rietveld method,Ceram. Int.38,3935(2012),https://doi.org/10.1016/j.ceramint.2012.01.046.

[15] QiX.,DhoJ.,TomovR.,BlamireM. G. andMacManus-DriscollJ. L.,Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3,Appl. Phys. Lett.86,062903(2005),https://doi.org/10.1063/1.1862336g.

[16] LayekS.,SahaS. andVermaH. C.,Preparation, structural and magnetic studies on BiFe1−xCrxO3 (x=0.0, 0.05 and 0.1) multiferroic nanoparticles,AIP Adv.3,032140(2013),https://doi.org/10.1063/1.4799063.

[17] BatttishaI. K.,FaragI. S. A.,KamalM.,AhmedM. A.,GirgisE.,El MeleegiH. A. andEl DesoukiF.,Dielectric and magnetic properties of nano-structure BiFeO3 doped with different concentrations of Co ions prepared by sol-gel method,New J. Glass Ceram.5,59(2015),https://doi.org/10.4236/njgc.2015.53008.

[18] RaghavenderA. T. andHongN. H.,Effects of Mn doping on structural and magnetic properties of multiferroic BiFeO3 nanograins made by sol-gel method,J. Magn.16,19(2011),https://doi.org/10.4283/JMAG.2011.16.1.019.

[19] PengB.,ZhangQ.,LiX.,SunT.,FanH.,KeS.,YeM.,WangY.,LuW.,NiuH.,ScottJ. F.,ZengX. andHuangH.,Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics,Adv. Electron. Mater.1,1500052(2015),https://doi.org/10.1002/aelm.201500052.

[20] FletcherN. H.,HiltonA. D. andRickettsB. W.,Optimization of energy storage density in ceramic capacitors,J. Phys. D, Appl. Phys.29,253(1996),https://doi.org/10.1088/0022-3727/29/1/037.

[21] HaoX.,A review on the dielectric materials for high energy-storage application,J. Adv. Dielectr.03,1330001(2013),https://doi.org/10.1142/S2010135X13300016.

[22] ChauhanA.,PatelS.,VaishR. andBowenC. R.,Anti-ferroelectric ceramics for high energy density capacitors,Materials8,8009(2015),https://doi.org/10.3390/ma8125439.

[23] RameshR. andSpaldinN. A.,Nanoscience and Technology: A Collection of Reviews from Nature Journals, ed. Rodgers P.,Chapter 3(Nature Publishing Group and Macmillan Publishers, 2009),pp. 20–28,https://doi.org/10.1142/9789814287005_0003.

[24] IshiwaraH.,Impurity substitution effects in BiFeO3 thin films — From a viewpoint of FeRAM applications,Curr. Appl. Phys.12,603(2012),https://doi.org/10.1016/j.cap.2011.12.019.

[25] MartinL. W.,CraneS. P.,ChuY.-H.,HolcombM. B.,GajekM.,HuijbenM.,YangC.-H.,BalkeN. andRameshR.,Multiferroics and magnetoelectrics: Thin films and nanostructures,J. Phys., Condens. Matter20,434220(2008),https://doi.org/10.1088/0953-8984/20/43/434220.

[26] RoginskaY. E.,TomashpoY. Y.,VenevtseY. N.,PetrovV. M. andZhdanovG. S.,Nature of dielectric and magnetic properties of BeFeO3,Sov. Phys.-JETP23,47(1966).

[27] KiselevS. V.,OzerovR. P. andZhdanovG. S.,Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction,Sov. Phys. Dokl.7,742(1963).

[28] TeagueJ. R.,GersonR. andJamesW. J.,Dielectric hysteresis in single crystal BiFeO3,Solid State Commun.8,1073(1970),https://doi.org/10.1016/0038-1098(70)90262-0.

[29] WangJ.,NeatonJ. B.,ZhengH.,NagarajanV.,OgaleS. B.,LiuB.,ViehlandD.,VaithyanathanV.,SchlomD. G.,WaghmareU. V.,SpaldinN. A.,RabeK. M.,WuttigM. andRameshR.,Epitaxial BiFeO3 multiferroic thin film heterostructures,Science299,1719(2003),https://doi.org/10.1126/science.1080615.

[30] RanjbarM.,GhaziM. E. andIzadifardM.,Investigation of the annealing temperature effect on structural, morphology, dielectric and magnetic properties of BiFeO3 nanoparticles,Physica C549,73(2018),https://doi.org/10.1016/j.physc.2018.02.052.

[31] PradhanA. K.et al.,Magnetic and electrical properties of single-phase multiferroic BiFeO3,J. Appl. Phys.97,093903(2005),https://doi.org/10.1063/1.1881775.

[32] LimS.-H.,MurakamiM.,YangJ. H.,YoungS.-Y.,Hattrick-SimpersJ.,WuttigM.,Salamanca-RibaL. G. andTakeuchiI.,Enhanced dielectric properties in single crystal-like BiFeO3 thin films grown by flux-mediated epitaxy,Appl. Phys. Lett.92,012918(2008),https://doi.org/10.1063/1.2831665.

[33] ZhengX. H.,ChenP. J.,MaN.,MaZ. H. andTangD. P.,Synthesis and dielectric properties of BiFeO3 derived from molten salt method,J. Mater. Sci., Mater. Electron.23,990(2012),https://doi.org/10.1007/s10854-011-0533-4.

[34] SafiR. andShokrollahiH.,Physics, chemistry and synthesis methods of nanostructured bismuth ferrite (BiFeO3) as a ferroelectro-magnetic material,Prog. Solid State Chem.40,6(2012),https://doi.org/10.1016/j.progsolidstchem.2012.03.001.

[35] MazumderR.,Sujatha DeviP.,BhattacharyaD.,ChoudhuryP.,SenA. andRajaM.,Ferromagnetism in nanoscale BiFeO3,Appl. Phys. Lett.9,062510(2007),https://doi.org/10.1063/1.2768201.

[36] ParkT.-J.,PapaefthymiouG. C.,ViescasA. J.,MoodenbaughA. R. andWongS. S.,Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles,Nano Lett.7,766(2007),https://doi.org/10.1021/nl063039w.

[37] ZhangL.,CaoX.-F.,MaY.-L.,ChenX.-T. andXueZ.-L.,Polymer-directed synthesis and magnetic property of nanoparticles-assembled BiFeO3 microrods,J. Solid State Chem.183,1761(2010),https://doi.org/10.1016/j.jssc.2010.05.029.

[38] ParkT.-J.,MaoY. andWongS. S.,Synthesis and characterization of multiferroic BiFeO3 nanotubes,Chem. Commun.2004,2708(2004),https://doi.org/10.1039/b409988e.

[39] WeiJ.,XueD. andXuY.,Photoabsorption characterization and magnetic property of multiferroic BiFeO3 nanotubes synthesized by a facile sol–gel template process,Scr. Mater.58,45(2008),https://doi.org/10.1016/j.scriptamat.2007.09.001.

[40] WangY.,XuG.,YangL.,RenZ.,WeiX.,WengW.,DuP.,ShenG. andHanG.,Hydrothermal synthesis of single-crystal bismuth ferrite nanoflakes assisted by potassium nitrate,Ceram. Int.35,1285(2009),https://doi.org/10.1016/j.ceramint.2008.04.016.

[41] DuttaD. P.,JayakumarO. D.,TyagiA. K.,GirijaK. G.,PillaiC. G. S. andSharmaG.,Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods,Nanoscale2,1149(2010),https://doi.org/10.1039/c0nr00100g.

[42] GaoF.,ChenX.,YinK.,DongS.,RenZ.,YuanF.,YuT.,ZouZ. andLiuJ.-M.,Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles,Adv. Mater.19,2889(2007),https://doi.org/10.1002/adma.200602377.

[43] GaoF.et al.,Preparation and photoabsorption characterization of BiFeO3 nanowires,Appl. Phys. Lett.89,102506(2006),https://doi.org/10.1063/1.2345825.

[44] XieS. H.et al.,Nanocrystalline multiferroic BiFeO3 ultrafine fibers by sol-gel based electrospinning,Appl. Phys. Lett.93,222904(2008),https://doi.org/10.1063/1.3040010.

[45] JoshiU. A.,JangJ. S.,BorseP. H. andLeeJ. S.,Microwave synthesis of single-crystalline perovskite BiFeO3 nanocubes for photoelectrode and photocatalytic applications,Appl. Phys. Lett.92,242106(2008),https://doi.org/10.1063/1.2946486.

[46] EerensteinW.,MathurN. D. andScottJ. F.,Multiferroic and magnetoelectric materials,Nature442,759(2006),https://doi.org/10.1038/nature05023.

[47] FiebigM.,LottermoserT.,FröhlichD.,GoltsevA. V. andPisarevR. V.,Observation of coupled magnetic and electric domains,Nature419,818(2002),https://doi.org/10.1038/nature01093.

[48] DanilkevitchM. I. andMakoedI. I.,Dielectric properties of spinel, garnet and perovskite oxides,Phys. Status Solidi B222,541(2000),https://doi.org/10.1002/1521-3951(200011)222:2<541::AID-PSSB541>3.0.CO;2-0.

[49] KothariD.,Raghavendra ReddyV.,GuptaA.,SatheV.,BanerjeeA.,GuptaS. M. andAwasthiA. M.,Multiferroic properties of polycrystalline Bi1−xCaxFeO3,Appl. Phys. Lett.91,202505(2007),https://doi.org/10.1063/1.2806199.

[50] WuH. andZhuX.,Microstructures, magnetic, and dielectric properties of Ba-doped BiFeO3 nanoparticles synthesized via molten salt route,J. Am. Ceram. Soc.102,4698(2019),https://doi.org/10.1111/jace.16348.

[51] LiuW.,TanG.,XueX.,DongG. andRenH.,Structure transition and enhanced ferroelectric properties of (Mn, Cr) co-doped BiFeO3 thin films,J. Mater. Sci., Mater. Electron.24,4827(2013),https://doi.org/10.1007/s10854-013-1482-x.

[52] DasR. andMandalK.,Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3,J. Magn. Magn. Mater.324,1913(2012),https://doi.org/10.1016/j.jmmm.2012.01.022.

[53] HasanM.,HakimM. A.,BasithM. A.,HossainMd. S.,AhmmadB.,ZubairM. A.,HussainA. and Md.IslamF.,Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3,AIP Adv.6,035314(2016),https://doi.org/10.1063/1.4944817.

[54] YangC.,JiangJ.-S.,QianF.-Z.,JiangD.-M.,WangC.-M. andZhangW.-G.,Effect of Ba doping on magnetic and dielectric properties of nanocrystalline BiFeO3 at room temperature,J. Alloys Compd.507,29(2010),https://doi.org/10.1016/j.jallcom.2010.07.193.

[55] SinghP. andJungJ. H.,Effect of oxygen annealing on magnetic, electric and magnetodielectric properties of Ba-doped BiFeO3,Physica B405,1086(2010),https://doi.org/10.1016/j.physb.2009.11.007.

[56] MahbubR.,FakhrulT.,IslamMd. F.,HasanM.,HussainA.,MatinM. A. andHakimM. A.,Structural, dielectric, and magnetic properties of Ba-doped multiferroic bismuth ferrite,Acta Metall. Sin. (Engl. Lett.)28,958(2015),https://doi.org/10.1007/s40195-015-0279-8.

[57] MazumderR. andSenA.,Effect of Pb-doping on dielectric properties of BiFeO3 ceramics,J. Alloys Compd.475,577(2009),https://doi.org/10.1016/j.jallcom.2008.07.082.

[58] GhafoorI.,SiddiqiS. A.,AtiqS.,RiazS. andNaseemS.,Sol–gel synthesis and investigation of structural, electrical and magnetic properties of Pb doped La0.1Bi​0.9FeO3 multiferroics,J. Sol-Gel Sci. Technol.74,352(2014),https://doi.org/10.1007/s10971-014-3517-z.

[59] YuanG. L. andOrS. W.,Multiferroicity in polarized single-phase Bi​0.875Sm​0.125FeO3 ceramics,J. Appl. Phys.100,024109(2006),https://doi.org/10.1063/1.2220642.

[60] UniyalP. andYadavK. L.,Pr doped bismuth ferrite ceramics with enhanced multiferroic properties,J. Phys., Condens. Matter21,405901(2009),https://doi.org/10.1088/0953-8984/21/40/405901.

[61] ZhangX.,SuiY.,WangX.,TangJ. andSuW.,Influence of diamagnetic Pb doping on the crystal structure and multiferroic properties of the BiFeO3 perovskite,J. Appl. Phys.105,07D918(2009),https://doi.org/10.1063/1.3079770.

[62] GeJ. J.,XueX. B.,ChengG. F.,YangM.,YouB.,ZhangW.,WuX. S.,HuA.,DuJ.,ZhangS. J.,ZhouS. M.,WangZ.,YangB. andSunL.,Nonmonotonic variation of magnetization in Bi​0.8La​0.2−xPb​xFeO3 (0≤x≤0.2) multiferroics,J. Magn. Magn. Mater.324,200(2012),https://doi.org/10.1016/j.jmmm.2011.08.010.

[63] KhomchenkoV. A.et al.,Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite,J. Appl. Phys.103,024105(2008),https://doi.org/10.1063/1.2836802.

[64] Reetu, AgarwalA., SanghiS. andAshima,Rietveld analysis, dielectric and magnetic properties of Sr and Ti codoped BiFeO3 multiferroic,J. Appl. Phys.110,073909(2011),https://doi.org/10.1063/1.3646557.

[65] WagnerK. W.,Zur theorie der unvollkommenen dielektrika,Ann. Phys.40,817(1913).

[66] SahuJ. R. andRaoC. N. R.,Beneficial modification of the properties of multiferroic BiFeO3 by cation substitution,Solid State Sci.9,950(2007),https://doi.org/10.1016/j.solidstatesciences.2007.06.006.

[67] BhushanB.,BasumallickA.,VasanthacharyaN. Y.,KumarS. andDasD.,Sr induced modification of structural, optical and magnetic properties in Bi​1−xSr​xFeO3 (x= 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles,Solid State Sci.12,1063(2010),https://doi.org/10.1016/j.solidstatesciences.2010.04.026.

[68] YuanX.,ShiL.,ZhaoJ.,ZhouS.,LiY.,XieC. andGuoJ.,Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds,J. Alloys Compd.708,93(2017),https://doi.org/10.1016/j.jallcom.2017.02.288.

[69] EhssaldeC. andRavesJ.,Ferroelectric ceramics: Defects and dielectric relaxations,J. Mater. Chem.11,1957(2001),https://doi.org/10.1039/b010117f.

[70] WangC. A.,PangH. Z.,ZhangA. H.,QinM. H.,LuX. B.,GaoX. S.,ZengM. andLiuJ. M.,Room temperature multiferroic and magnetodielectric properties in Sm and Sc co-doped BiFeO3 ceramics,J. Phys. D, Appl. Phys.48,395302(2015),https://doi.org/10.1088/0022-3727/48/39/395302.

[71] YuanX.,ShiL.,ZhaoJ.,ZhouS.,GuoJ.,PanS.,MiaoX. andWuL.,Tuning ferroelectric, dielectric, and magnetic properties of BiFeO3 ceramics by Ca and Pb co-doping,Phys. Status Solidi B256,1800499(2018),https://doi.org/10.1002/pssb.201800499.

[72] JudgeW. D.,XiaoZ. W. andKipourosG. J.,Rare Metal Technology 2017, eds. Kim H.,Alam S.,Neelameggham N.,Oosterhof H.,Ouchi T. and Guan X., The Minerals, Metals & Materials Series,Chapter 4(Springer,Cham,2017),pp. 37–45,https://doi.org/10.1007/978-3-319-51085-9_4.

[73] RhamanM. M.,MatinM. A.,HakimM. A. andIslamM. F.,Dielectric, ferroelectric and ferromagnetic properties of samarium doped multiferroic bismuth ferrite,Mater. Res. Express6,125080(2019),https://doi.org/10.1088/2053-1591/ab57c2.

[74] DilluV.,KebedeM. T.,DeviS. andChauhanS.,Synthesis and characterization of samarium substituted bismuth ferrites nanoparticles,Mater. Today, Proc.34,813(2020),https://doi.org/10.1016/j.matpr.2020.05.348.

[75] YaoY. B.,LiuW. C. andMakC. L.,Pyroelectric properties and electrical conductivity in samarium doped BiFeO3 ceramics,J. Alloys Compd.527,157(2012),https://doi.org/10.1016/j.jallcom.2012.02.182.

[76] AinR. S. N.,HalimS. A. andHashimM.,Effect of Sm-doping on magnetic and dielectric properties of BiFeO3,Adv. Mater. Res.501,329(2012),https://doi.org/10.4028/www.scientific.net/amr. 501.329.

[77] SinghH. andYadavK. L.,Structural, dielectric, vibrational and magnetic properties of Sm doped BiFeO3 multiferroic ceramics prepared by a rapid liquid phase sintering method,Ceram. Int.41,9285(2015),https://doi.org/10.1016/j.ceramint.2015.03.212.

[78] AwanA.,RiazS.,NairanA.,XuY. B. andNaseemS.,Tunable magnetic and dielectric properties of BiFeO3 nanoparticles — Effect of lanthanum doping,Proc. 2016 World Congr. Advances in Civil, Environmental and Materials Research (2016),pp. 1–9.

[79] KumariA.,KumariK.,VijA.,AlviP. A. andKumarS.,Electrical and structural properties of La doped BiFeO3,AIP Conf. Proc.2220,040032(2020),https://doi.org/10.1063/5.0001563.

[80] García-ZaletaD. S.,Torres-HuertaA. M.,Domínguez- CrespoM. A.,Matutes-AquinoJ. A.,GonzálezA. M. andVillafuerte-CastrejónM. E.,Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties,Ceram. Int.40,9225(2014),https://doi.org/10.1016/j.ceramint.2014.01.143.

[81] ChaudhuriA. andMandalK.,Enhancement of ferromagnetic and dielectric properties of lanthanum doped bismuth ferrite nanostructures,Mater. Res. Bull.47,1057(2012),https://doi.org/10.1016/j.materresbull.2011.12.034.

[82] DuaY.,ChengZ. X.,ShahbaziM.,CollingsE. W.,DouS. X. andWangX. L.,Enhancement of ferromagnetic and dielectric properties in lanthanum doped BiFeO3 by hydrothermal synthesis,J. Alloys Compd.490,637(2010),https://doi.org/10.1016/j.jallcom.2009.10.124.

[83] DasS. R.,ChoudharyR. N. P.,BhattacharyaP. andKatiyarR. S.,Structural and multiferroic properties of La-modified BiFeO3 ceramics,J. Appl. Phys.101,034104(2007),https://doi.org/10.1063/1.2432869.

[84] SheoranN.,KumarA.,KumarV. andBanerjeeA.,Structural, optical, and multiferroic properties of yttrium (Y​3+)-substituted BiFeO3 nanostructures,J. Supercond. Nov. Magn.33,2017(2020),https://doi.org/10.1007/s10948-019-05411-2.

[85] FkiH.,KoubaaM.,SicardL.,Cheikhrouhou-KoubaaW.,CheikhrouhouA. andAmmar-MerahS.,Influence of Y doping on structural, vibrational, optical and magnetic properties of BiFeO3 ceramics prepared by mechanical activation,Ceram. Int.43,4139(2017),https://doi.org/10.1016/j.ceramint.2016.12.028.

[86] AroraM. andKumarM.,Electron spin resonance probed enhanced magnetization and optical properties of Sm doped BiFeO3 nanoparticles,Mater. Lett.137,285(2014),https://doi.org/10.1016/j.matlet.2014.08.140.

[87] BellakkiM. B. andManivannanV.,Citrate-gel synthesis and characterization of yttrium-doped multiferroic BiFeO3,J. Sol- Gel Sci. Technol.53,184(2009),https://doi.org/10.1007/s10971-009-2076-1.

[88] LüF.-C.,YinK.,FuK.-X.,WangY.-N.,RenJ. andXieQ.,Enhanced magnetic and dielectric properties of Y doped bismuth ferrite nanofiber,Ceram. Int.43,16101(2017),https://doi.org/10.1016/j.ceramint.2017.08.171.

[89] ZhongM.,Pavan KumarN.,SagarE.,JianZ.,YeminH. andVenugopal ReddyP.,Structural, magnetic and dielectric properties of Y doped BiFeO3,Mater. Chem. Phys.173,126(2016),https://doi.org/10.1016/j.matchemphys.2016.01.047.

[90] MishraR. K.,PradhanD. K.,ChoudharyR. N. P. andBanerjeeA.,Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3,J. Phys., Condens. Matter20,045218(2008),https://doi.org/10.1088/0953-8984/20/04/045218.

[91] IlićN. I.,BobićJ. D.,StojadinovićB. S.,DžunuzovićA. S.,PetrovićM. M. V.,Dohčević-MitrovićZ. D. andStojanovićB. D.,Improving of the electrical and magnetic properties of BiFeO3 by doping with yttrium,Mater. Res. Bull.77,60(2016),https://doi.org/10.1016/j.materresbull.2016.01.018.

[92] VashisthB. K.,BangruwaJ. S.,GairolaS. P. andVermaV.,Structural, dielectric, ferroelectric and magnetic properties of Gd doped BiFeO3,Integr. Ferroelectr.194,21(2018),https://doi.org/10.1080/10584587.2018.1514869.

[93] DabasS.,KumarM. andThakurO. P.,Investigation on structural, magnetic, dielectric and impedance spectroscopy properties of ‘Gd’ modified multiferroic-ferroelectric solid solutions,Ceram. Int.46,17361(2020),https://doi.org/10.1016/j.ceramint.2020.04.026.

[94] SureshP. andSrinathS.,Crystal structure and enhanced dielectric, magnetic properties of Gd doped BiFeO3 ceramics,Mater. Focus2,201(2013),https://doi.org/10.1166/mat.2013.1075.

[95] GuoR.,FangL.,DongW.,ZhengF. andShenM.,Enhanced photocatalytic activity and ferromagnetism in Gd doped BiFeO3 nanoparticles,J. Phys. Chem. C114,21390(2010),https://doi.org/10.1021/jp104660a.

[96] LoteyG. S. andVermaN. K.,Structural, magnetic, and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size,J. Nanopart. Res.14,742(2012),https://doi.org/10.1007/s11051-012-0742-7.

[97] PradhanS. K. andRoulB. K.,Effect of Gd doping on structural, electrical and magnetic properties of BiFeO3 electroceramic,J. Phys. Chem. Solids72,1180(2011),https://doi.org/10.1016/j.jpcs.2011.07.017.

[98] CyriacJ.,JohnJ. C.,KalarikkalN. andAugustineS.,Tailoring the dielectric and magnetic properties of Eu-substituted BiFeO3 nanoparticles,Mater. Today, Proc.25,134(2020),https://doi.org/10.1016/j.matpr.2019.12.186.

[99] KulkarniS. R.,KanamadiC. M. andChouguleB. K.,Magnetic and dielectric properties of Ni​0.8Co​0.1Cu​0.1Fe2O​4+PZT composites,J. Phys. Chem. Solids67,1607(2006),https://doi.org/10.1016/j.jpcs.2006.01.117.

[100] ChakrabartiK.,DasK.,SarkarB. andDeS. K.,Magnetic and dielectric properties of Eu-doped BiFeO3 nanoparticles by acetic acid-assisted sol-gel method,J. Appl. Phys.110,103905(2011),https://doi.org/10.1063/1.3662178.

[101] SatiP. C.,KumarM.,ChhokerS. andJewariyaM.,Influence of Eu substitution on structural, magnetic, optical and dielectric properties of BiFeO3 multiferroic ceramics,Ceram. Int.41,2389(2015),https://doi.org/10.1016/j.ceramint.2014.10.053.

[102] UniyalP. andYadavK. L.,Room temperature multiferroic properties of Eu doped BiFeO3,J. Appl. Phys.105,07D914(2009),https://doi.org/10.1063/1.3072087.

[103] LiuJ.,FangL.,ZhengF.,JuS. andShenM.,Enhancement of magnetization in Eu doped BiFeO3 nanoparticles,Appl. Phys. Lett.95,022511(2009),https://doi.org/10.1063/1.3183580.

[104] VangaP. R.,MangalarajaR. V. andAshokM.,Effect of (Nd, Ni) co-doped on the multiferroic and photocatalytic properties of BiFeO3,Mater. Res. Bull.72,299(2015),https://doi.org/10.1016/j.materresbull.2015.08.015.

[105] ZhaoJ.,ZhangX.,LiuS.,ZhangW. andLiuZ.,Effect of Ni substitution on the crystal structure and magnetic properties of BiFeO3,J. Alloys Compd.557,120(2013),https://doi.org/10.1016/j.jallcom.2013.01.005.

[106] KumarA. andYadavK. L.,A systematic study on magnetic, dielectric and magnetocapacitance properties of Ni doped bismuth ferrite,J. Phys. Chem. Solids72,1189(2011),https://doi.org/10.1016/j.jpcs.2011.06.006.

[107] NadeemM.,KhanW.,KhanS.,HusainS. andAnsarA.,Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping,J. Appl. Phys.124,164105(2018),https://doi.org/10.1063/1.5050946.

[108] Betancourt-CanteraL. G.,Bolarín-MiróA. M.,Cortés- EscobedoC. A.,Hernández CruzL. E. andSánchez-De JesúsF.,Structural transitions and multiferroic properties of high Ni-doped BiFeO3,J. Magn. Magn. Mater.456,381(2018),https://doi.org/10.1016/j.jmmm.2018.02.065.

[109] KhajonritJ.,PrasoetsophaN.,SinprachimT.,KidkhunthodP.,PinitsoontornS. andMaensiriS.,Structure, characterization, and magnetic/electrochemical properties of Ni-doped BiFeO3 nanoparticles,Adv. Nat. Sci., Nanosci. Nanotechnol.8,015010(2017),https://doi.org/10.1088/2043-6254/aa597d.

[110] YangC.-H.,KanD.,TakeuchiI.,NagarajanV. andSeidelJ.,Doping BiFeO3: Approaches and enhanced functionality,Phys. Chem. Chem. Phys.14,15953(2012),https://doi.org/10.1039/c2cp43082g.

[111] DaraktchievM.,CatalanG. andScottJ. F.,Landau theory of domain wall magnetoelectricity,Phys. Rev. B81,224118(2010),https://doi.org/10.1103/physrevb.81.224118.

[112] SkumryevV.,LaukhinV.,FinaI.,MartíX.,SánchezF.,GospodinovM. andFontcubertaJ.,Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures,Phys. Rev. Lett.106,057206(2011),https://doi.org/10.1103/physrevlett.106.057206.

[113] CatalanG.,SeidelJ.,RameshR. andScottJ. F.,Domain wall nanoelectronics,Rev. Mod. Phys.84,119(2012),https://doi.org/10.1103/revmodphys.84.119.

[114] GhahfarokhiS. E. M.,LarkiM. R. andKazeminezhadI.,The effect of Mn doped on the structural, magnetic, dielectric and optical properties of bismuth ferrite (BiFe​1−xMn​xO​3) nanoparticles,Vacuum173,109143(2019),https://doi.org/10.1016/j.vacuum.2019.109143.

[115] DhanalakshmiB.,Chandra SekharB.,VivekanandaK. V.,Srinivasa RaoB.,Parvatheeswara RaoB. andSubba RaoP. S. V.,Enhanced dielectric and magnetic properties in Mn-doped bismuth ferrite multiferroic nanoceramics,Appl. Phys. A126,557(2020),https://doi.org/10.1007/s00339-020-03745-6.

[116] AwasthiR. R.,AsokanK. andDasB.,Structural, dielectric and magnetic domains properties of Mn-doped BiFeO3 materials,Appl. Ceram. Technol.17,1410(2019),https://doi.org/10.1111/ijac.13446.

[117] YooY. J.,HwangJ. S.,LeeY. P.,ParkJ. S.,RheeJ. Y.,KangJ.-H.,LeeK. W.,LeeB. W. andSeoM. S.,Origin of enhanced multiferroic properties in Dy and Co co-doped BiFeO3 ceramics,J. Magn. Magn. Mater.374,669(2015),https://doi.org/10.1016/j.jmmm.2014. 09.034.

[118] DongS.,LiuJ.-M.,CheongS.-W. andRenZ.,Multiferroic materials and magnetoelectric physics: Symmetry, entanglement, excitation, and topology,Adv. Phys.64,519(2015),https://doi.org/10.1080/00018732.2015.1114338.

[119] WohlfeldK.,DaghoferM. andOleśA. M.,Spin-orbital physics for p orbitals in alkali RO2 hyperoxides — Generalization of the Goodenough-Kanamori rules,Europhys. Lett.96,27001(2011),https://doi.org/10.1209/0295-5075/96/27001.

[120] SinhaA. K.,BhushanB.,Jagannath,SharmaR. K.,SenS.,MandalB. P.,MeenaS. S.,BhattP.,PrajapatC. L.,PriyamA.,MishraS. K. andGadkariS. C.,Enhanced dielectric, magnetic and optical properties of Cr-doped BiFeO3 multiferroic nanoparticles synthesized by sol-gel route,Results Phys.13,102299(2019),https://doi.org/10.1016/j.rinp.2019.102299.

[121] KumarA. andYadavK. L.,Magnetic, magnetocapacitance and dielectric properties of Cr doped bismuth ferrite nanoceramics,Mater. Sci. Eng. B176,227(2011),https://doi.org/10.1016/j.mseb.2010.11.012.

[122] ReaneyI. M.,MacLarenI.,WangL.,SchafferB.,CravenA.,KalantariK.,SterianouI.,MiaoS.,KarimiS. andSinclairD. C.,Defect chemistry of Ti-doped antiferroelectric Bi​0.85Nd​0.15FeO3,Appl. Phys. Lett.100,182902(2012),https://doi.org/10.1063/1.4705431.

[123] BernardoM. S.,JardielT.,PeiteadoM.,MompeanF. J.,Garcia-HernandezM.,GarciaM. A.,VillegasM. andCaballeroA. C.,Intrinsic compositional inhomogeneities in bulk Ti-doped BiFeO3: Microstructure development and multiferroic properties,Chem. Mater.25,1533(2013),https://doi.org/10.1021/cm303743h.

[124] ZhengX. H.,MaZ. H.,ChenP. J.,TangD. P. andMaN.,Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from molten salt method,J. Mater. Sci., Mater. Electron.23,1533(2012),https://doi.org/10.1007/s10854-012-0624-x.

[125] TianY.,XueF.,FuQ.,ZhouL.,WangC.,GouH. andZhangM.,Structural and physical properties of Ti-doped BiFeO3 nanoceramics,Ceram. Int.44,4287(2018),https://doi.org/10.1016/j.ceramint.2017.12.013.

[126] SeidelJ.,LuoW.,SureshaS. J.,NguyenP. K.,LeeA. S.,KimS. Y.,YangC. H.,PennycookJ.,PantelidesS. T.,ScottJ. F. andRameshR.,Prominent electrochromism through vacancy-order melting in a complex oxide,Nat. Commun.3,799(2012),https://doi.org/10.1038/ncomms1799.

[127] WangN.,LuoX.,HanL.,ZhangZ.,ZhangR.,OlinH. andYangY.,Structure, performance, and application of BiFeO3 nanomaterials,Nano-Micro Lett.12,81(2020),https://doi.org/10.1007/s40820-020-00420-6.

[128] JiangZ.-Z.,GuanZ.,YangN.,XiangP.-H.,QiR.-J.,HuangR.,YangP.-X.,ZhongN. andDuanC.-G.,Epitaxial growth of BiFeO3 films on SrRuO3/SrTiO3,Mater. Charact.131,217(2017),https://doi.org/10.1016/j.matchar.2017.07.009.

[129] ZhangY.,WangY.,QiJ.,TianY.,SunM.,ZhangJ.,HuT.,WeiM.,LiuY. andYangJ.,Enhanced magnetic properties of BiFeO3 thin films by doping: Analysis of structure and morphology,Nanomaterials8,711(2018),https://doi.org/10.3390/nano8090711.

[130] PalkarV. R. andPintoR.,BiFeO3 thin films: Novel effects,Pramana58,1003(2002),https://doi.org/10.1007/s12043-002-0207-0.

[131] WangY. P.,ZhouL.,ZhangM. F.,ChenX. Y.,LiuJ. M. andLiuZ. G.,Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering,Appl. Phys. Lett.84,1731(2004),https://doi.org/10.1063/1.1667612.

[132] LeeY.-H.,WuJ.-M.,ChuehY.-L. andChouL.-J.,Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current,Appl. Phys. Lett.87,172901(2005),https://doi.org/10.1063/1.2112181.

[133] LiuG.-Z.,WangC.,WangC.-C.,QiuJ.,HeM.,XingJ.,JinK.-J.,LuH.-B. andYangG.-Z.,Effects of interfacial polarization on the dielectric properties of BiFeO3 thin film capacitors,Appl. Phys. Lett.92,122903(2008),https://doi.org/10.1063/1.2900989.

[134] ShahS. M. H.,AkbarA.,RiazS.,AtiqS. andNaseemS.,Magnetic, structural, and dielectric properties of Bi​1−xK​xFeO3 thin films using sol-gel,IEEE Trans. Magn.50,2201004(2014),https://doi.org/10.1109/tmag.2014.2310691.

[135] SenK.,SinghK.,GautamA. andSinghM.,Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic,Ceram. Int.38,243(2012),https://doi.org/10.1016/j.ceramint.2011.06.059.

[136] BaiL.,SunM.,MaW.,YangJ.,ZhangJ. andLiuY.,Enhanced magnetic properties of co-doped BiFeO3 thin films via structural progression,Nanomaterials10,1798(2020),https://doi.org/10.3390/nano10091798.

[137] YanF.,LaiM.-O.,LuL. andZhuT.-J.,Enhanced multiferroic properties and valence effect of Ru-doped BiFeO3 thin films,J. Phys. Chem. C114,6994(2010),https://doi.org/10.1021/jp1009127.

[138] YanF.,ZhuT. J.,LaiM. O. andLuL.,Enhanced multiferroic properties and domain structure of La-doped BiFeO3 thin films,Scr. Mater.63,780(2010),https://doi.org/10.1016/j.scriptamat.2010.06.013.

[139] SchmidH.,Some symmetry aspects of ferroics and single phase multiferroics,J. Phys., Condens. Matter20,434201(2008),https://doi.org/10.1088/0953-8984/20/43/434201.

[140] SchmidH.,On a magnetoelectric classification of materials,Int. J. Magn.4,337(1973).

[141] RyuJ.,PriyaS.,UchinoK. andKimH.-E.,Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials,J. Electroceram.8,107(2002),https://doi.org/10.1023/a:1020599728432.

[142] MohantyN. K.,BeheraA. K.,SatpathyS. K.,BeheraB. andNayakP.,Effect of dysprosium substitution on structural and dielectric properties of BiFeO3-PbTiO3 multiferroic composites,J. Rare Earths33,639(2015),https://doi.org/10.1016/s1002-0721(14) 60465-8.

[143] KaurI. andVermaN. K.,Magnetic and electric properties of BFO–NFO nanocomposites,Mater. Sci. Semicond. Process.33,32(2015),https://doi.org/10.1016/j.mssp.2015.01.032.

[144] DasA.,DeS.,BandyopadhyayS.,ChatterjeeS. andDasD.,Magnetic, dielectric and magnetoelectric properties of BiFeO3-CoFe2O4 nanocomposites,J. Alloys Compd.697,353(2017),https://doi.org/10.1016/j.jallcom.2016.12.128.

[145] RemyaK. P.,RajalakshmiR. andPonpandianN.,Development of BiFeO3/MnFe2O4 ferrite nanocomposites with enhanced magnetic and electrical properties,Nanoscale Adv.2020,2968(2020),https://doi.org/10.1039/d0na00255k.

[146] KhanA. R.,MustafaG. M.,AbbasS. K.,AtiqS.,SaleemM.,RamayS. M. andNaseemS.,Flexible ferroelectric and magnetic orders in BiFeO3/MnFe2O4 nanocomposites to steer wide range energy and data storage capability,Results Phys.16,102956(2020),https://doi.org/10.1016/j.rinp.2020.102956.

[147] SinghH. andYadavK. L.,Synthesis and thermal, structural, dielectric, magnetic and magnetoelectric studies of BiFeO3-MgFe2O4 nanocomposites,J. Am. Ceram. Soc.98,574(2014),https://doi.org/10.1111/jace.13316.

[148] AugustineP.,NarayanaY. andKalarickalN.,Enhancement of room temperature magneto-electric coupling effect in perovskite-spinel (1−x)BiFeO3–xZnFe2O4 nanocomposites,Mater. Today, Proc.35,436(2020),https://doi.org/10.1016/j.matpr.2020.02.948.

[149] KhalidA.,SaleemM.,NaseemS.,RamayS. M.,ShaikhH. M. andAtiqS.,Magneto-electric coupling and multifunctionality in BiFeO3–CoFe2O4 core-shell nano-composites,Ceram. Int.46,12828(2020),https://doi.org/10.1016/j.ceramint.2020.02.053.

[150] ZhaoY.,LiJ.,YinZ.,ZhangX.,HuangJ.,CaoL. andWangH.,Interface-mediated local conduction at tubular interfaces in BiFeO3–CoFe2O4 nanocomposites,J. Alloys Compd.823,153699(2020),https://doi.org/10.1016/j.jallcom.2020.153699.

[151] AkramF.,KimJ.,KhanS. A.,ZebA.,YeoH. G.,SungY. S.,SongT. K.,KimM.-H. andLeeS.,Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3–BaTiO3-based ceramics,J. Alloys Compd.818,152878(2019),https://doi.org/10.1016/j.jallcom.2019.152878.

[152] BaqiahH.,TalibZ. A.,ShaarA. H.,DihomM. M.,Awang KechikM. M.,ChenS. K.,LiewJ. Y. C.,ZainalZ. andFudziL. M.,Structural, optical, magnetic and photoelectrochemical properties of (BiFeO​3)​1−x(Fe3O​4)x nanocomposites,J. Sol-Gel Sci. Technol.91,624(2019),https://doi.org/10.1007/s10971-019-05053-9.

[153] PanH.,LiF.,LiuY.,ZhangQ.,WangM.,LanS.,ZhengY.,MaJ.,GuL.,ShenY.,YuP.,ZhangS.,ChenL.-Q.,LinY.-H. andNanC.-W.,Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design,Science365,578(2019),https://doi.org/10.1126/science.aaw8109.

[154] YangC.,QianJ.,LvP.,WuH.,LinX.,WangK. andChengZ.,Flexible lead-free BFO-based dielectric capacitor with large energy density, superior thermal stability, and reliable bending endurance,J. Materiomics6,200(2020),https://doi.org/10.1016/j.jmat.2020.01.010.

[155] ZhangQ. M.,WangH.,KimN. andCrossL. E.,Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate–titanate ceramics,J. Appl. Phys.75,454(1994),https://doi.org/10.1063/1.355874.

[156] RandallC. A.,KimN.,KuceraJ. P.,CaoW. andShroutT. R.,Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics,J. Am. Ceram. Soc.81,677(1998),https://doi.org/10.1111/j.1151-2916.1998.tb02389.x.

A. Joana Preethi, M. Ragam. Effect of doping in multiferroic BFO: A review[J]. Journal of Advanced Dielectrics, 2021, 11(6): 2130001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!