硅酸盐通报, 2022, 41 (6): 2181, 网络出版: 2022-07-24  

沸石基缓释肥料的研究进展

Research Progress of Zeolite-Based Slow Release Fertilizers
作者单位
兰州石化职业技术大学应用化学工程学院, 兰州 730060
摘要
沸石基缓释肥料不仅显著提高了化学肥料的利用率, 而且具有改良土壤、保持土壤水分、保护生态环境等诸多优点, 在农业可持续发展中具有广阔的应用前景。本文综述了近年来沸石基缓释肥料的缓释机理和应用研究现状。总结缓释机理发现, 沸石对阳离子(NH+4、K+)养分的缓释主要是利用沸石对阳离子良好的吸附和离子交换性能, 而沸石对阴离子(NO-3、PO3-4、SO2-4)养分的缓释则需要对沸石表面进行阳离子改性。此外, 沸石与磷矿在土壤中的结合可以促进有效磷的溶解, 进而促进植物生长。应用研究表明, 影响沸石基缓释肥料性能的因素主要包括: 沸石的类型和粒径、沸石的施用剂量和方法、土壤质地和结构以及肥料的类型和来源等。结合目前的研究现状, 对沸石基缓释肥料进行经济性评价, 加强工艺开发及应用示范是未来重点研究的方向。
Abstract
Zeolite-based slow release fertilizers have broad application prospects in agricultural sustainable development due to many advantages such as nutrient retention, soil amendment, soil moisture retention, environment protection, etc. The research on mechanism and application of zeolite-based slow release fertilizers in recent years was reviewed. It was concluded from slow-release mechanism that the exceptional high cations exchange capacity and strong affinity of zeolites for NH+4 and K+ can be exploited to maximize the nitrogen and potassium use efficiency in agricultural applications. Although almost all of zeolites have no high affinity for anionic fertilizers such as NO-3, PO3-4 and SO2-4, by modifying their surface chemistries using cationic surfactant, multifunctional zeolite adsorbents with capability to trap anions and non-polar organics can be obtained. In addition, controlled available phosphorus is achievable by a combination of zeolite ion exchange and phosphate rock dissolution. The application study showed that factors affecting the performance of zeolite-based slow release fertilizers mainly includes zeolite type and application rate, method of the application, zeolite particle size and density, soil texture and structure, as well as nutrition type and supplies. Based on the current research, it pointed out that the economic evaluation, technological development and application demonstration of zeolite-based slow release fertilizers will be the focus of future research.
参考文献

[1] 白玉超,王德汉,段继贤,等.生物炭、沸石与化肥配施的农学和环境效应的研究进展[J].中国农学通报,2020,36(14):93-100.

[2] NOH Y D, KOMARNENI S, PARK M. Mineral-based slow release fertilizers: a review[J]. Korean Journal of Soil Science and Fertilizer, 2015, 48(1): 1-7.

[3] AL N S E, TJPRC. A review on changes in fertilizers, from coated controlled release fertilizers (CRFs) to nanocomposites of CRFs[J]. International Journal of Agricultural Science and Research, 2019, 9(2): 53-74.

[4] GIRIJAVENI V, REDDY K S, SHARMA K L, et al. Role of zeolites in improving nutrient and water storage capacity of soil and their impact on overall soil quality and crop performance[M]//Soil Science: Fundamentals to Recent Advances. Singapore: Springer Singapore, 2021: 449-467.

[5] NAKHLI S A A, DELKASH M, BAKHSHAYESH B E, et al. Application of zeolites for sustainable agriculture: a review on water and nutrient retention[J]. Water, Air, & Soil Pollution, 2017, 228(12): 1-34.

[6] AGUSTINA T E, RIZKY I. Characterization and utilization of zeolite for NPK slow release fertilizer[J]. International Journal of Engineering, 2018, 31(4): 276-283.

[7] SOLTYS L, MYRONYUK I, TATARCHUK T, et al. Zeolite-based composites as slow release fertilizers (review)[J]. Фiзика i хiмiя твердого тiла, 2020, 21(1): 89-104.

[8] 姜新福,孙向阳,关裕宓.天然沸石在土壤改良和肥料生产中的应用研究进展[J].草业科学,2004,21(4):48-51.

[9] 解占军,王秀娟,牛世伟,等.沸石与改性沸石在土壤质量改良中的应用研究进展[J].杂粮作物,2006,26(2):142-144.

[10] 祁 娜,孙向阳,张婷婷,等.沸石在土壤改良及污染治理中的应用研究进展[J].贵州农业科学,2011,39(11):133-135.

[11] 陈 江,陈霄燕,戴慧敏,等.沸石矿物在东北地区黑土地盐碱化土壤改良中的应用[J].地质与资源,2020,29(6):621-626.

[12] LOUHAR G, VERMA S, DAHIYA G. Zeolites: a potential source of soil amendments to improve soil properties[J]. Chem Sci Rev Lett, 2020, 9(35): 777-785.

[13] HE X B, HUANG Z B. Zeolite application for enhancing water infiltration and retention in loess soil[J]. Resources, Conservation and Recycling, 2001, 34(1): 45-52.

[14] GHOLIZADEH-SARABI S, SEPASKHAH A R. Effect of zeolite and saline water application on saturated hydraulic conductivity and infiltration in different soil textures[J]. Archives of Agronomy and Soil Science, 2013, 59(5): 753-764.

[15] DE CAMPOS BERNARDI A C, ANCHO OLIVIERA P P, DE MELO MONTE M B, et al. Brazilian sedimentary zeolite use in agriculture[J]. Microporous and Mesoporous Materials, 2013, 167: 16-21.

[16] TALEBNEZHAD R, SEPASKHAH A R. Effects of bentonite on water infiltration in a loamy sand soil[J]. Archives of Agronomy and Soil Science, 2013, 59(10): 1409-1418.

[17] WEA T Y, UNONIS M N A, KHAIRUDDIN M I, et al. Mechanism in using commercial high efficient zeolite-base greenfeed slow release fertilizers[J]. Journal of Agricultural Chemistry and Environment, 2018, 7(1): 1-9.

[18] GREER F R, SHANNON M. Infant methemoglobinemia: the role of dietary nitrate in food and water[J]. Pediatrics, 2005, 116(3): 784-786.

[19] PEA-HARO S, LLOPIS-ALBERT C, PULIDO-VELAZQUEZ M, et al. Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain[J]. Journal of Hydrology, 2010, 392(3/4): 174-187.

[20] ENGLERT A H, RUBIO J. Characterization and environmental application of a Chilean natural zeolite[J]. International Journal of Mineral Processing, 2005, 75(1): 21-29.

[21] SFECHIS S, VIDICAN R, SANDOR M, et al. Using assessment of zeolite amendments in agriculture[J]. ProEnvironment, 2015, 8(21): 85-88.

[22] TORMA S, VILCEK J, ADAMISIN P, et al. Influence of natural zeolite on nitrogen dynamics in soil[J]. Turkish Journal of Agriculture and Forestry, 2014, 38: 739-744.

[23] SEPASKHAH A R, YOUSEFI F. Effects of zeolite application on nitrate and ammonium retention of a loamy soil under saturated conditions[J]. Soil Research, 2007, 45(5): 368.

[24] BAERLOCHER C, MCCUSKER L B, OLSON D H. P42/mmc[M]//Atlas of Zeolite Framework Types. Amsterdam: Elsevier, 2007: 74-75.

[25] HUANG Z T, PETROVIC A M. Clinoptilolite zeolite influence on nitrate leaching and nitrogen use efficiency in simulated sand based golf greens[J]. Journal of Environmental Quality, 1994, 23(6): 1190-1194.

[26] PIN-VILLARREAL A R, BAWAZIR A S, SHUKLA M K, et al. Retention and transport of nitrate and ammonium in loamy sand amended with clinoptilolite zeolite[J]. Journal of Irrigation and Drainage Engineering, 2013, 139(9): 755-765.

[27] ASILIAN H, MORTAZAVI S B, KAZEMIAN H, et al. Removal of ammonia from air, using three Iranian natural zeolites[J]. Iranian Journal of Public Health, 2004, 33(1): 45-51.

[28] AHMED O, YAP C H, MUHAMAD A B N. Minimizing ammonia loss from urea through mixing with zeolite and acid sulphate soil[J]. International Journal of Physical Sciences, 2010, 5: 2198-2202.

[29] KURODA K, HANAJIMA D, FUKUMOTO Y, et al. Isolation of thermophilic ammonium-tolerant bacterium and its application to reduce ammonia emission during composting of animal wastes[J]. Bioscience, Biotechnology, and Biochemistry, 2004, 68(2): 286-292.

[30] BAUTISTA J M, KIM H, AHN D H, et al. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite[J]. Korean Journal of Chemical Engineering, 2011, 28(1): 189-194.

[31] LEGGO P J. The efficacy of the organo-zeolitic bio-fertilizer[J]. Agrotechnology, 2015, 4(1): 1000130.

[32] QIAN J H, DORAN J W, WEIER K L, et al. Soil denitrification and nitrous oxide losses under corn irrigated with high-nitrate groundwater[J]. Journal of Environmental Quality, 1997, 26(2): 348-360.

[33] TAHERI-SODEJANI H, GHOBADINIA M, TABATABAEI S H, et al. Using natural zeolite for contamination reduction of agricultural soil irrigated with treated urban wastewater[J]. Desalination and Water Treatment, 2015, 54(10): 2723-2730.

[34] BHARDWAJ D, SHARMA M, SHARMA P, et al. Synthesis and surfactant modification of clinoptilolite and montmorillonite for the removal of nitrate and preparation of slow release nitrogen fertilizer[J]. Journal of Hazardous Materials, 2012, 227/228: 292-300.

[35] PAGLIARI P H, STROCK J S, ROSEN C J. Changes in soil pH and extractable phosphorus following application of Turkey manure incinerator ash and triple superphosphate[J]. Communications in Soil Science and Plant Analysis, 2010, 41(12): 1502-1512.

[36] RAJPU T. Influence of incubation period, temperature and different phosphate levels on phosphate adsorption in soil[J]. American Journal of Agricultural and Biological Sciences, 2014, 9(2): 251-260.

[37] SHARPLEY A N, HERRON S, DANIEL T. Overcoming the challenges of phosphorus-based management in poultry farming[J]. Journal of Soil and Water Conservation, 2007, 62(6): 375-389.

[38] TELES A P B, RODRIGUES M, PAVINATO P S. Solubility and efficiency of rock phosphate fertilizers partially acidulated with zeolite and pillared clay as additives[J]. Agronomy, 2020, 10(7): 918.

[39] PICKERING H W, MENZIES N W, HUNTER M N. Zeolite/rock phosphate: a novel slow release phosphorus fertilizer for potted plant production[J]. Scientia Horticulturae, 2002, 94(3/4): 333-343.

[40] WU P X, LIAO Z W. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism[J]. Journal of Zhejiang University Science B, 2005, 6(3): 195-201.

[41] BANSIWAL A K, RAYALU S S, LABHASETWAR N K, et al. Surfactant-modified zeolite as a slow release fertilizer for phosphorus[J]. Journal of Agricultural and Food Chemistry, 2006, 54(13): 4773-4779.

[42] LANCELLOTTI I, TOSCHI T, PASSAGLIA E, et al. Release of agronomical nutrient from zeolitite substrate containing phosphatic waste[J]. Environmental Science and Pollution Research International, 2014, 21(23): 13237-13242.

[43] FUJINUMA R, HUNTER M, MENZIES N. Sunflowers drive acid dissolution of rock phosphate when banded with ammonium zeolite[J]. Acta Horticulturae, 2015(1104): 21-28.

[44] MING D W, ALLEN E R. Use of natural zeolites in agronomy, horticulture and environmental soil remediation[J]. Reviews in Mineralogy and Geochemistry, 2001, 45(1): 619-654.

[45] MORAETIS D, PAPAGIANNIDOU S, PRATIKAKIS A, et al. Effect of zeolite application on potassium release in sandy soils amended with municipal compost[J]. Desalination and Water Treatment, 2016, 57(28): 13273-13284.

[46] GL A, EROUL D, ONGUN A R. Comparison of the use of zeolite and perlite as substrate for crisp-head lettuce[J]. Scientia Horticulturae, 2005, 106(4): 464-471.

[47] RABAI K, KASIM O. Use of formulated nitrogen, phosphorus, and potassium compound fertilizerusing clinoptilolite zeolite in maize (zea mays L.) cultivation[J]. Emirates Journal of Food and Agriculture, 2013, 25(9): 713.

[48] LIN L, LEI Z F, WANG L, et al. Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites[J]. Separation and Purification Technology, 2013, 103: 15-20.

[49] ESLAMI M, KHORASSANI R, FOTOVAT A, et al. NH+4-K+ co-loaded clinoptilolite as a binary fertilizer[J]. Archives of Agronomy and Soil Science, 2020, 66(1): 33-45.

[50] HASBULLAH N A, AHMED O H, AB MAJID N M. Effects of amending phosphatic fertilizers with clinoptilolite zeolite on phosphorus availability and its fractionation in an acid soil[J]. Applied Sciences, 2020, 10(9): 3162.

[51] ZHENG J L, CHEN T T, WU Q, et al. Effect of zeolite application on phenology, grain yield and grain quality in rice under water stress[J]. Agricultural Water Management, 2018, 206: 241-251.

[52] 吴 奇,陈弘扬,王延智,等.斜发沸石对辽西半干旱区节水灌溉稻田的节水减肥效应[J].农业机械学报,2021,52(6):305-313+406.

[53] 夏桂敏,刘光辉,沙 炎,等.斜发沸石对干湿交替稻田土壤速效钾和产量的影响[J].农业工程学报,2019,35(18):101-109.

[54] 王甲辰,陈延华,邹国元,等.添加不同颗粒沸石粉对沙壤玉米NPK吸收和水分、养分淋溶的影响[J].水土保持学报,2015,29(2):1-6+34.

[55] CATLI N J, MIGO V P, ALFAFARA C G, et al. Optimization of the production of a complete fertilizer formulation by batch impregnation using clinoptilolite zeolite as carrier[J]. IOP Conference Series: Materials Science and Engineering, 2020, 778(1): 012066.

[56] SZATANIK-KLOC A, SZEREMENT J, ADAMCZUK A, et al. Effect of low zeolite doses on plants and soil physicochemical properties[J]. Materials (Basel, Switzerland), 2021, 14(10): 2617.

[57] OZBAHCE A, TARI A F, GNLAL E, et al. The effect of zeolite applications on yield components and nutrient uptake of common bean under water stress[J]. Archives of Agronomy and Soil Science, 2015, 61(5): 615-626.

[58] IPPOLITO J A, TARKALSON D D, LEHRSCH G A. Zeolite soil application method affects inorganic nitrogen, moisture, and corn growth[J]. Soil Science, 2011, 176(3): 136-142.

[59] ZWINGMANN N, SINGH B, MACKINNON I D R, et al. Zeolite from alkali modified kaolin increases NH+4 retention by sandy soil: column experiments[J]. Applied Clay Science, 2009, 46(1): 7-12.

[60] WEBER M A, BARBARICK K A, WESTFALL D G. Ammonium adsorption by a zeolite in a static and a dynamic system[J]. Journal of Environmental Quality, 1983, 12(4): 549-552.

[61] PERRIN T S, DROST D T, BOETTINGER J L, et al. Ammonium-loaded clinoptilolite: a slow-release nitrogen fertilizer for sweet corn[J]. Journal of Plant Nutrition, 1998, 21(3): 515-530.

[62] MALEKIAN R, ABEDI-KOUPAI J, ESLAMIAN S S. Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth[J]. Journal of Hazardous Materials, 2011, 185(2/3): 970-976.

[63] 栗印环,张秀兰,秦 雪,等.天然沸石对肥料的控释作用探究[J].非金属矿,2013,36(4):53-55.

[64] DUBEY A, MAILAPALLI D R. Zeolite coated urea fertilizer using different binders: fabrication, material properties and nitrogen release studies[J]. Environmental Technology & Innovation, 2019, 16: 100452.

[65] MIHOK F, MACKO J, ORIAK A, et al. Controlled nitrogen release fertilizer based on zeolite clinoptilolite: study of preparation process and release properties using molecular dynamics[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100030.

[66] TSINTSKALADZE G, EPRIKASHVILI L, URUSHADZE T, et al. Nanomodified natural zeolite as a fertilizer of prolonged activity[J]. Annals of Agrarian Science, 2016, 14(3): 163-168.

[67] JHA V K, HAYASHI S. Modification on natural clinoptilolite zeolite for its NH+4 retention capacity[J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 29-35.

[68] LI Z H, ZHANG Y P. Use of surfactant-modified zeolite to carry and slowly release sulfate[J]. Desalination and Water Treatment, 2010, 21(1/2/3): 73-78.

[69] THIRUNAVUKKARASU M, SUBRAMANIAN K S. Surface modified nano-zeolite used as carrier for slow release of sulphur[J]. Journal of Applied and Natural Science, 2014, 6(1): 19-26.

[70] KHAN M Z H, ISLAM M R, NAHAR N, et al. Synthesis and characterization of nanozeolite based composite fertilizer for sustainable release and use efficiency of nutrients[J]. Heliyon, 2021, 7(1): e06091.

[71] PIMSEN R, PORRAWATKUL P, NUENGMATCHA P, et al. Efficiency enhancement of slow release of fertilizer using nanozeolite-chitosan/sago starch-based biopolymer composite[J]. Journal of Coatings Technology and Research, 2021, 18(5): 1321-1332.

[72] LATEEF A, NAZIR R, JAMIL N, et al. Synthesis and characterization of zeolite based nano-composite: an environment friendly slow release fertilizer[J]. Microporous and Mesoporous Materials, 2016, 232: 174-183.

[73] JUMAER I, SUMARNI W, NINGRUM L W, et al. Using of low grade zeolite based fly ash as slow release agent for zea mays growth[J]. Journal of Physics: Conference Series, 2020, 1567(2): 022036.

[74] LI J, ZHUANG X G, FONT O, et al. Synthesis of merlinoite from Chinese coal fly ashes and its potential utilization as slow release K-fertilizer[J]. Journal of Hazardous Materials, 2014, 265: 242-252.

[75] FLORES C G, SCHNEIDER H, MARCILIO N R, et al. Potassic zeolites from Brazilian coal ash for use as a fertilizer in agriculture[J]. Waste Management, 2017, 70: 263-271.

[76] 傅金祥,张延平,李 森,等.改性沸石氨氮吸附剂的制备及其在生活污水处理中的应用[J].硅酸盐通报,2021,40(5):1728-1734.

[77] 崔家新,王连勇,张 坤,等.粉煤灰基沸石处理氮磷废水的研究进展[J].硅酸盐通报,2021,40(8):2622-2630.

[78] HERMASSI M, VALDERRAMA C, FONT O, et al. Phosphate recovery from aqueous solution by K-zeolite synthesized from fly ash for subsequent valorisation as slow release fertilizer[J]. Science of the Total Environment, 2020, 731: 139002.

[79] BONETTI B, WALDOW E C, TRAPP G, et al. Production of zeolitic materials in pilot scale based on coal ash for phosphate and potassium adsorption in order to obtain fertilizer[J]. Environmental Science and Pollution Research International, 2021, 28(3): 2638-2654.

[80] 李鑫媛.天然沸石和改性沸石对硒(Ⅳ)的吸附性研究及在土壤和植物中的再利用[D].北京:北京林业大学,2020.

石勤, 刘珂, 后王新, 陈智博, 窦勐星, 王海燕, 杨恒辉. 沸石基缓释肥料的研究进展[J]. 硅酸盐通报, 2022, 41(6): 2181. SHI Qin, LIU Ke, HOU Wangxin, CHEN Zhibo, DOU Mengxing, WANG Haiyan, YANG Henghui. Research Progress of Zeolite-Based Slow Release Fertilizers[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2181.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!