量子电子学报, 2017, 34 (1): 36, 网络出版: 2017-02-09  

基于拉曼泵浦-探测光谱的冷原子温度估算

Cold atom temperature estimate based on Raman pump-probe spectroscopy
程雍 1,2,3,*谭政 1,2王谨 1,2詹明生 1,2
作者单位
1 中国科学院武汉物理与数学研究所波谱与原子分子物理国家重点实验室, 湖北 武汉 430071
2 中国科学院冷原子物理中心, 湖北 武汉 430071
3 中国科学院大学, 北京 100049
摘要
提出了基于拉曼泵浦-探测技术得到的原子吸收谱线获取冷原子温度的方案,并将其应 用于85Rb原子磁光阱中。实验中,原子在囚禁光和探测光的共同作用下发生受激拉曼跃迁,产生 亚自然线宽的类色散峰,通过把该类色散峰与理论模型进行拟合估算出被囚禁85Rb冷原子团的温 度为230 μK。相对于飞行时间测温法,该方案提供了一种简捷的测量冷原子温度的方法。
Abstract
A scheme is proposed to obtain the cold atom temperature by using atomic absorption spectrometry obtained based on Raman pump-probe technique, and the proposed scheme is applied to the magneto-optical trap of 85Rb atoms. In experiment, the stimulated Raman transition of atoms occurs as the trapping and probe lasers interact with the cold atoms simultaneously. Dispersion-like peaks of sub-natural linewidth are generated. By fitting the dispersion-like peaks with theoretical model, the temperature of trapped cold 85Rb atoms is estimated, which is about 230 μK. Compared with the time-of-flight measurement method, the scheme provides a relatively simple method to estimate cold atom temperature.
参考文献

[1] Hansch T W, Schawlow A L. Cooling of gases by laser radiation[J]. Opt. Commun., 1975, 13(1): 68-69.

[2] Raab E L, Prentiss M, Cable A, et al. Trapping of neutral sodium atoms with radiation pressure[J]. Phys. Rev. Lett., 1987, 59(23): 2631-2634.

[3] Hao Kai, Zhou Lin, Tang Biao, et al. Realization of a dual magneto-optical trap of 85Rb and 87Rb[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2014, 31(6): 648-655 (in Chinese).

[4] Lett P D, Watts R N, Westbrook C I, et al. Observation of atoms laser cooled below the Doppler limit[J]. Phys. Rev. Lett., 1988, 61(2): 169-172.

[5] Tridib R, Arijit S, et al. Temperature measurement of laser-cooled atoms using vacuum Rabi splitting[J]. Phys. Rev. A, 2013, 87(3): 033832.

[6] Wang Xucheng, Cheng Huadong, Xiao Ling, et al. A new approach to measure temperature of large-scaled cold atomic cloud[J]. Acta Optica Sinica (光学学报), 2012, 32(8): 0802001 (in Chinese).

[7] Vemuri G, Agarwal G S, Nageswara B D. Sub-Doppler resolution in inhomogeneously broadened media using intense control fields[J]. Phys. Rev. A, 1996, 53(4): 2842-2845.

[8] Chen Yingcheng, Chen Yunwen, Su Jungjung, et al. Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations[J]. Phys. Rev. A, 2001, 63(4): 3808.

[9] Torii Y, Shiokawa N, et al. Spectroscopic properties of cold rubidium atoms in a magneto-optic trap[J]. Prog. Cryst. Growth. Charact. Mater., 1996, 33(1): 413-417.

[10] Rapol U D, Wasan A, Natarajan V. Observation of sub-natural linewidths for cold Rb atoms in a magneto-optic trap[J]. Europhys. Lett., 2003, 61(1): 53-59.

[11] Liu Longwei, Jia Fengdong, Ruan Yaping, et al. The probe transmission spectra of 87Rb in an operating magneto-optical trap in the presence of an ionizing laser[J]. Chin. Phys. Lett., 2013, 30(4): 043201.

[12] Cui Xiuhua, Mu Baoxia, et al. Vibrational to rotational energy transfer between KH and CO2 in collision[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2013, 30(2): 169-174 (in Chinese).

[13] Tabosa J W R, Chen G, et al. Nonlinear spectroscopy of cold atoms in a spontaneous-force optical trap[J]. Phys. Rev. Lett., 1991, 6(25): 3245-3248.

[14] Grison D, Lounis B, Salomon C, et al. Raman spectroscopy of cesium atoms in a laser trap[J]. Europhys. Lett., 1991, 15: 149.

[15] Autler S H, Townes C H. Stark effect in rapidly varying fields[J]. Phys. Rev., 1955, 100: 703.

[16] Agarwal G S. Control-laser-induced subnatural linewidths and quenching of spontaneous emission[J]. Phys. Rev. A, 1996, 54(5): R3734.

程雍, 谭政, 王谨, 詹明生. 基于拉曼泵浦-探测光谱的冷原子温度估算[J]. 量子电子学报, 2017, 34(1): 36. CHENG Yong, TAN Zheng, WANG Jin, ZHAN Mingsheng. Cold atom temperature estimate based on Raman pump-probe spectroscopy[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 36.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!