中国激光, 2021, 48 (23): 2306002, 网络出版: 2021-11-25   

基于拉锥七芯光纤的湿度传感器研究 下载: 1060次

Research on Humidity Sensor Based on Tapered Seven Core Fiber
作者单位
1 武汉理工大学光纤传感技术国家工程实验室, 湖北 武汉 430074
2 武汉理工大学材料科学与工程学院, 湖北 武汉 430074
摘要
提出了一种基于拉锥七芯光纤的湿度传感器,七芯光纤熔接于两段单模光纤(SMF)的中间,利用氢氧焰拉锥技术对七芯光纤进行熔融拉锥,光纤拉锥后因其激发的包层基模和高阶模之间发生干涉形成马赫-曾德尔干涉仪(MZI)。研究结果表明光纤直径越小,传感结构的折射率灵敏度越高,锥区直径为10 μm时传感结构的灵敏度最高为1123 nm/RIU。将七芯光纤与亲水性材料氧化石墨烯(GO)薄膜结合制得湿度传感器,实验测得湿度灵敏度的最大值为-0.0535 nm/(%RH)。该传感器具有灵敏度高、制备简单、稳定性好的优势,可广泛应用于生物化学传感领域。
Abstract

Objective The monitoring of relative humidity is very important in the fields of agriculture, medical treatment and biochemical research, which urges scholars to develop various humidity sensors. Among many humidity sensors, optical fiber humidity sensor has become a research hotspot owing to their unique advantages such as high sensitivity, anti-electromagnetic interference, compact structure and other unique advantages. There are many kinds of optical fiber humidity sensors, and the interferometric humidity sensor has attracted wide attention because of its advantages of simple preparation and high sensitivity, among which the humidity sensor based on Mach-Zehnder interferometer (MZI) is widely used. However, the sensitivity and stability of these sensors still need to be further improved. In order to improve the sensitivity of the sensor and maintain its stability, a humidity sensor based on seven core tapered fiber is proposed and demonstrated. The sensor consists of a short section of seven core fiber between two single-mode fibers, in which the seven core fiber is fused and tapered by a hydrogen oxygen flame to form a tapered structure. Mach-Zehnder interferometer is formed by interference between the base mode of the cladding and the higher mode excited after the fiber is tapered. The effective refractive index of the cladding mode is easily affected by the external environment parameters. Therefore, the structure is very sensitive to the changes of the external environment parameters. The proposed structure is particularly suitable for the situations where high measurement sensitivity and high stability are required.

Methods Firstly, the seven core fiber with a length of about 1 cm is fused between two single-mode fibers. Then, the seven core fiber in the sensing structure is fused and tapered by a fiber taper machine (Kaipule Co. Ltd. AFBT-8000MX-H). Finally, GO film is coated on the surface of the tapered area by photothermal method. The coating process is as follows: the GO prepared by the improved Hummers method is mixed into a solution with the concentration of 1 mg/mL, and the GO solution is dropped on the surface of the fiber. In the coating process, the SLED broadband light source is used to transmit the light in the sensing structure. When the exciting light passes through the tapered fiber, a part of the light enters the cladding and generates a lot of heat in the cladding. GO molecules can be firmly adsorbed on the fiber surface by using the photothermal effect of laser, and thus the film is uniform and firm.

Results and Discussions Firstly, the wavelength scanning function of Rsoft software is used to calculate the sensor uncoated with diameter of 10 μm. The refractive index sensitivity of sensor is about 1200 nm/RIU (Fig. 4), which proves the feasibility of the experiment and provide a theoretical basis for humidity measurement. In order to provide experimental basis for subsequent humidity test, the refractive index response of samples with different diameters of uncoated GO was tested. The refractive index sensitivities of the samples with the diameter of 15 μm (s-1), 12 μm (s-2) and 10 μm (s-3) were 685 nm/RIU, 753 nm/RIU and 1123 nm/RIU, respectively (Fig. 7). Thus, the refractive index sensitivity of the sample can be greatly improved by increasing the stretching length to reduce the tapered diameter of the seven core fiber. Then, the s-4 was prepared under the same parameters as the sample with the highest sensitivity. And the GO film was coated on the surface of s-4 to prepare a humidity sensor. The experimental results show that the humidity sensitivity of sample s-4 is the highest at 1533 nm, and the maximum sensitivity is -0.0535 nm/(%RH) (Fig. 10). And the humidity sensitivity of the sensor with diameter of 14 μm (s-5) is -0.0173 nm/(%RH) (Fig. 11). Thus, the humidity sensitivity can be increased by reducing the sample diameter. In addition, we also evaluated the stability of s-4. When the relative humidity is 34.8%RH, 45.0%RH and 60.3%RH, the maximum error of the sensor wavelength is 0.03 nm, 0.04 nm and 0.04 nm, respectively, which indicates that the proposed sensor has good stability (Fig. 12).

Conclusions In summary, we propose and demonstrate a humidity sensor based on tapered seven core fiber, and the seven core fiber is fused and tapered by a hydrogen oxygen flame to form a tapered structure. The experimental results show that the refractive index sensitivity is up to 1123 nm/RIU for the sensor uncoated with taper waist diameter of 10 μm, which is consistent with the simulation results. Then the humidity sensor was fabricated by coating a layer of GO film on the surface of fiber. The maximum humidity sensitivity of the sensor was -0.0535 nm/(%RH), and the linearity was 98.5%. The sensor has the advantages of high sensitivity, simple preparation and good stability, which can be used in the field of humidity sensing.

1 引言

相对湿度的监测在农业、医疗、生物化学研究等领域至关重要,故各种测试湿度的传感器已被研制出来,如传统的机械湿度计、基于电容和电阻的湿度传感器、光纤湿度传感器等[1-5]。在这些湿度传感器中,光纤湿度传感器因其具有灵敏度高、抗电磁干扰、结构紧凑等独特优势成为研究热点[6-9]

光纤湿度传感器的种类繁多,常见的有光栅型光纤湿度传感器、环形谐振腔湿度传感器、干涉型湿度传感器等[10-12]。其中:光栅型湿度传感器结构稳定,但其传感原理的客观因素导致其灵敏度普遍较低;环形谐振腔湿度传感器一般是基于微光纤来制备的,制备过程复杂且不利于湿敏材料的涂覆,从而限制了其灵敏度的提升[11,13-14];而干涉型湿度传感器因其具有制备简单、灵敏度高等优势,引起了研究者的广泛关注。干涉型湿度传感器按照干涉仪结构可以分为法布里-珀罗干涉仪(FPI)、萨格纳克干涉仪(Sagnac)、迈克耳孙干涉仪(MI)、马赫-曾德尔干涉仪(MZI)等[15-19]。如邵敏等[19]在单模光纤(SMF)的一端熔接一段光子晶体光纤(PCF),其中熔接点为光纤粗锥,构成MI, 在30%~90%的相对湿度范围内,传感器的湿度灵敏度为-0.095 dB/(%RH)。在这些干涉型湿度传感器中,基于MZI的湿度传感器应用比较广泛,Liu等[20]将一段单模光纤与另外两段单模光纤错芯焊接并在表面涂覆氧化石墨烯(GO),制成基于MZI的湿度传感器,在相对湿度为30%RH~60%RH范围内其灵敏度为0.0272 nm/(%RH)。除此之外,对光纤进行熔融拉锥形成模间干涉是一种比较简单的制备MZI的方法。比如2016年Soltanian等[21]制备了两个基于MZI的湿度传感器,传感器由单模光纤拉锥成的两个锥形区域组成,在0%RH~90%RH的湿度范围内,锥区平均直径为4.05 μm的传感器的灵敏度为0.02 nm/(%RH),锥区平均直径为2.89 μm的传感器的灵敏度为0.01 nm/(%RH)。但是该传感器有两个直径较细的锥区部分,这给实验操作增加了难度,并且该传感器的灵敏度需要进一步提高。

本文设计制备了一种基于拉锥七芯光纤(TSCF)的湿度传感器,该传感器由单模光纤、七芯光纤、单模光纤级联熔接而成。利用光纤熔融拉锥技术对七芯光纤进行熔融拉锥,光纤拉锥后因其激发的包层基模和高阶模之间发生干涉形成MZI,模式的有效折射率容易受外界环境参量的影响,因此该结构对外界环境参量的变化十分敏感。七芯光纤由于纤芯比较多,其稳定性提升,解决了基于拉锥光纤的湿度传感器灵敏度低且稳定性差的问题。实验测试了直径不同的样品的折射率灵敏度,结果表明样品直径越小折射率灵敏度越高。最后用灵敏度最高的样品的参数制备了另一种传感结构并在其锥区表面镀GO薄膜,测试了该样品的湿度灵敏度和稳定性。该湿度传感器制备简单、灵敏度高、稳定性强,可用于环境中相对湿度的监测。

2 结构制备和理论研究

2.1 理论研究

基于拉锥七芯光纤的湿度传感器传感结构示意图如图1所示, 该传感器由单模光纤、七芯光纤、单模光纤级联熔接而成。利用光纤熔融拉锥机(Kaipule Co. Ltd. AFBT-8000MX-H)对七芯光纤进行熔融拉锥后,七芯光纤的直径减小,激发出包层模式。当七芯光纤直径为10 μm左右时,纤芯直径不足1 μm,无法支持模式在纤芯中传输,这时,包层模的基模和高阶模之间发生干涉。

图 1. 传感结构示意图。(a)传感器结构;(b)七芯光纤锥区显微镜图;(c)七芯光纤拉锥前横截面图

Fig. 1. Schematic diagrams of sensing structure. (a) Sensor structure; (b) microscope of the tapered area of TSCF; (c) cross section of seven core fiber untapered

下载图片 查看所有图片

所提出的传感器的光谱特性可以用双光束干涉模型来描述[22],表达式为

I=I1+I2+2I1I2cosφ,(1)

式中φ=2πΔneffL/λ为包层基模和高阶模的相位差,I1I2为包层基模和高阶模的光强,λ为工作波长,L为七芯光纤锥区长度,Δneff= n1eff- n2eff为包层基模和高阶模之间的有效折射率差,其中 n1effn2eff分别为七芯光纤的包层基模和高阶模的有效折射率,当2πΔneffL/λ= 2m+1π(m为正整数)时出现干涉波谷,波谷表达式为

λm=2ΔneffL2m+1(2)

当外界环境折射率发生变化时,包层基模和高阶模之间的有效折射率差发生改变,谐振波谷发生漂移,漂移为

Δλm=2LΔneff+δn2m+1-2LΔneff2m+1=2Lδn2m+1,(3)

其中δn是Δneff的变化值。当外界环境相对湿度增加时,GO膜会吸收更多的水分子,被吸收的水分子将附着在GO表面或对GO层的切片进行填充,使GO表面载流子密度增加,导致GO的电导率下降, GO的电导率σ与化学势μc之间的关系为[23-25]

σ=je2kBTπ2ω-j2ΓμckBT+2lnexp-μc/kBT+1+je24πln2μc-ω+j2Γ2μc+ω+j2Γ,(4)

其中,e,kB,T,Γ,h分别为电子的电荷、玻尔兹曼常数、环境温度、振动频率和普朗克常数。当水分子附着在GO上时,GO的表面电荷载流子密度增加,GO的费米能级增加,导致带间跃迁受阻,电导率σ降低,因此可得nGOσμc[10]。即当外界环境湿度上升时,GO的电导率下降,导致GO的折射率下降。由图2可知,传感器周围环境折射率下降时模式有效折射率减小,导致Δneff发生变化,从而引起干涉光谱的漂移。

图 2. 模式有效折射率随外界环境折射率变化图。 (a)HE11; (b)HE12; (c)HE13

Fig. 2. Variation of mode effective refractive index with external refractive index. (a) HE11; (b) HE12; (c) HE13

下载图片 查看所有图片

利用Comsol Multiphysics软件,基于有限元法对拉锥后七芯光纤的模场特性进行了模拟。七芯光纤纤芯和包层的折射率分别为1.4501和1.4449,包层直径和纤芯直径等比例缩小。图2展示了包层直径为10 μm的七芯光纤中三个包层模式(HE11、HE12、HE13)有效折射率随外界环境折射率的变化情况,变化率用p来表示。由图可知,当外界环境折射率发生改变时,包层基模和高阶模的有效折射率发生变化,包层模和基模的有效折射率差随之改变,即(2)式中的Δneff发生改变,由(3)式可知干涉光谱产生漂移。

为了分析光在拉锥七芯光纤中的传输特点,用Rsoft软件的Beam PROP功能对拉锥七芯光纤内光的传输行为进行模拟仿真,分析光在拉锥七芯光纤中的传输特点。单模光纤的纤芯和包层直径分别设置为9 μm和125 μm,七芯光纤的包层直径和单模光纤一样,都为125 μm,七个纤芯的直径相同,为6.4 μm,纤芯和包层折射率分别为1.4501和1.4449,七芯光纤锥区的直径为10 μm,输入光的波长为1550 nm。通过仿真计算得到光经过拉锥七芯光纤的能量分布情况,如图3所示。从图3可以看出,光进入七芯光纤之前被稳定地束缚在单模光纤纤芯内传输,归一化强度约为1。当光进入拉锥七芯光纤的第一个过渡区时,七芯光纤中间纤芯的光开始向包层耦合,并激发包层模,之后经过直径均匀的锥区,一小部分光耦合到旁边的纤芯中,大部分光在包层中传输,中间芯的光强较弱,最后经过第二个过渡区,包层中的大部分光重新耦合回中间纤芯,光强增强。

图 3. 直径为10 μm的七芯光纤中的能量分布

Fig. 3. Energy distribution in seven core fiber with diameter of 10 μm

下载图片 查看所有图片

为了进一步阐述拉锥七芯光纤模式干涉仪的光谱特性,利用Rsoft软件的波长扫描功能对直径为10 μm的七芯光纤在不同环境折射率条件下的归一化光功率与波长之间的关系进行模拟仿真,仿真中选取波长范围1450~1650 nm进行研究,七芯光纤直径为10 μm。仿真计算得到的干涉光谱如图4所示,当外界环境折射率升高时,七芯光纤的光谱向长波长漂移,通过计算得出直径为10 μm的七芯光纤的折射率灵敏度约为1200 nm/RIU。该仿真结果说明锥形七芯光纤对外界环境折射率变化有响应,而后续我们对环境中湿度的监测实质上就是监测外界环境折射率变化时传感器的响应特性。本次仿真结果证明了实验的可行性,并为湿度的测量提供了一定的理论基础。

图 4. 锥形光纤输出归一化光功率在不同环境折射率下随波长的变化关系

Fig. 4. Relationship between the output normalized optical power of tapered fiber and wavelength at different refractive indexes

下载图片 查看所有图片

2.2 样品结构制备

首先将长度为1 cm左右的七芯光纤熔接在两个单模光纤的中间,之后通过光纤熔融拉锥机(Kaipule Co. Ltd. AFBT-8000MX-H)对传感结构中的七芯光纤进行熔融拉锥,最后利用光压光热法在七芯光纤锥区表面涂覆GO薄膜。镀膜过程如下:将由改进的Hummers法制备的氧化石墨烯配制成质量浓度为1 mg/mL的溶液,用超声波清洗机超声30 min左右,将溶液滴在七芯光纤锥区表面,使用宽带光源(SLED)对传感结构通光。当激光通过七芯光纤锥区时,一部分光进入包层,并在包层中产生大量的热量,利用激光的这种光压光热效应,光纤表面可以牢牢地吸附住氧化石墨烯分子,因此获得的薄膜均匀牢固。图5(a)为GO的扫描电镜图,从中可以清楚地看到GO的褶皱状结构;图5(b)为光纤的扫描电镜图,从中可以清楚地看到未涂覆GO的光纤表面十分光滑。利用光压光热法将GO涂覆到七芯光纤之后的扫描电镜图及局部放大图如图5(c)和图5(d)所示。可以看到,通过上述镀膜过程,在七芯光纤表面形成了一层氧化石墨烯薄膜。

图 5. 扫描电镜图。(a)氧化石墨烯;(b)未涂覆氧化石墨烯的光纤;(c)涂覆氧化石墨烯后的光纤;(d)涂覆氧化石墨烯后的光纤局部放大图

Fig. 5. Scanning electron microscopes. (a) Graphene oxide; (b) uncoated optical fiber; (c) optical fiber coated with graphene oxide; (d) partially enlarged optical fiber coated with graphene oxide

下载图片 查看所有图片

传感器拉锥前后及涂覆GO薄膜前后的透射光谱如图6所示,由图可知,单模光纤与七芯光纤的熔接损耗约为2 dB,七芯光纤拉锥前干涉现象不明显,当对七芯光纤拉锥后,激发的包层基模和高阶模之间发生干涉,出现明显的干涉峰。GO薄膜的折射率大于包层折射率,当光通过镀膜区域时,GO吸收了一部分的光强,导致损耗增大,但是三个特征峰的位置基本不变,因此GO不宜过厚,否则损耗过大不利于透射光谱的监测。

图 6. 传感结构拉锥前后及涂覆GO前后的透射光谱图对比

Fig. 6. Transmission spectra of sensor structure before and after tapering and GO coating

下载图片 查看所有图片

3 实验结果和讨论

3.1 传感器镀膜前的折射率响应特性

为了对后续湿度测试提供实验基础,对不同直径、未涂覆GO的样品进行折射率响应实验测试,样品s-1、s-2、s-3的直径分别为15 μm、12 μm、10 μm,将样品放置在充满氯化钠(NaCl)液体的盒子中,通过改变液体折射率来测试样品对外界环境折射率变化的响应。样品的折射率响应实验步骤如下:先将适量的NaCl固体加入去离子水中配制成一定浓度的NaCl溶液,再将样品放入待测溶液中固定,实验过程中通过向NaCl溶液中加入一定量的去离子水改变NaCl溶液的浓度,从而使待测溶液的折射率发生改变,整个实验过程中由光谱仪(OSA)监测透射光谱并保存相应图谱。通过理论计算得到液体浓度及其对应的折射率,并通过阿贝折射仪进行折射率标定。

三个不同直径样品的折射率响应如图7所示。样品s-1、s-2、s-3的折射率灵敏度分别为685 nm/RIU、753 nm/RIU、1123 nm/RIU。样品s-3的折射率灵敏度和我们仿真得到的灵敏度基本一致。从以上三组数据可以看出,通过增加拉伸长度来减小七芯光纤的锥区直径可以大幅提高样品的折射率灵敏度,但是样品的直径不宜过小,一是因为直径太小样品容易断裂,操作难度增加,二是因为直径越小样品的损耗越大,不利于氧化石墨烯涂覆。

图 7. 不同直径样品的折射率灵敏度。(a)(b)样品s-1;(c)(d)样品s-2;(e)(f)样品s-3

Fig. 7. Refractive index sensitivity of samples with different diameters. (a)(b) Sample s-1; (c)(d) sample s-2; (e)(f) sample s-3

下载图片 查看所有图片

3.2 传感器镀膜后的湿度响应特性

由3.1节得出,七芯光纤锥区直径为10 μm的传感结构即样品s-3的折射率灵敏度最大,在与s-3同样参数情况下制备样品s-4,在其表面涂覆GO薄膜,并对所制备的湿度传感器进行湿度测量,湿度测试系统实验装置如图8所示。传感器的一端连接SLED,另一端连接OSA。将传感器放入自制湿度箱中,湿度箱分为两层:在底层放置并固定传感器,以保证测试过程中传感器不受外界环境其他因素的扰动;在上层放置不同浓度的饱和盐溶液,不同浓度的饱和盐溶液对应不同的湿度,通过饱和盐溶液的挥发特性改变湿度箱内的湿度环境,湿度箱通过湿度计实时监测箱内的湿度。在室温下,湿度从29.5%RH上升到60.2%RH,每个湿度间隔为5%RH左右,每次湿度值保持稳定1 h以上后,将透射光谱图保存。

图 8. 相对湿度测试实验装置图

Fig. 8. Relative humidity test device

下载图片 查看所有图片

图9为样品s-4随外界环境相对湿度变化的透射光谱图,从图中可以看出,当外界环境相对湿度升高时,样品s-4的三个谐振波谷向短波长发生漂移。由(4)式可知,当外界环境相对湿度升高时,GO吸附环境中的水分子使其电导率发生改变,从而导致折射率减小,即传感结构周围环境折射率下降,导致Δneff减小;由(3)式可知,干涉峰向短波长方向漂移,这与实验中光谱漂移方向一致。

图 9. 样品s-4在不同相对湿度下的透射光谱

Fig. 9. Transmission spectra of sample s-4 at different relative humidity

下载图片 查看所有图片

图10为样品s-4中三个不同位置共振波谷与湿度变化的关系。由图可知,湿度从29.5%RH升高到60.2%RH的过程中,三个谐振波谷均向短波长方向漂移,1533 nm左右的谐振波谷灵敏度为-0.0535 nm/(%RH),线性度为98.5%,1566 nm左右的谐振波谷灵敏度K为-0.0451 nm/(%RH),线性度R2为97.1%,1598 nm左右的谐振波谷灵敏度为-0.0418 nm/(%RH),线性度为96.3%。三个干涉波谷的湿度灵敏度略有不同,这是因为七芯光纤拉锥后包层基模和高阶模之间产生多模干涉,不同的干涉波谷由不同的模式间干涉形成,而不同模式的有效折射率不同,形成的折射率差也不同,导致灵敏度不同。由此可知,样品s-4在1533 nm附近谐振波谷的湿度灵敏度最大且线性度最好,灵敏度最大为-0.0535 nm/(%RH)。与Azzuhri等[26]提出的基于微纤维谐振腔的湿度传感器相比,我们提出的传感器的灵敏度提高了5.4倍;与Soltanian等[21]提出的基于拉锥单模光纤的湿度传感器相比,我们提出的传感器的灵敏度提高了2.7倍,直径增大了两倍多,稳定性及机械强度更好。

图 10. 样品s-4不同谐振波谷随湿度变化的光谱响应。(a)(b)Dip A; (c)(d)Dip B; (e)(f)Dip C

Fig. 10. Spectral response of different resonant waves of sample s-4 varying with humidity. (a)(b) Dip A; (c)(d) Dip B; (e)(f) Dip C

下载图片 查看所有图片

为了探讨直径对湿度传感器灵敏度的影响,用同样的方法制备了直径为14 μm的样品(s-5),其湿度响应特性如图11所示,实验测得该样品的湿度灵敏度为-0.0173 nm/(%RH)。因此,样品直径增加,样品的湿度灵敏度减小,故通过减小样品直径可以增加其湿度灵敏度。

图 11. 样品s-5的湿度响应。(a)透射谱;(b)湿度灵敏度

Fig. 11. Humidity response of sample s-5. (a) Transmission; (b) sensitivity of relative humidity

下载图片 查看所有图片

稳定性是评价相对湿度传感器性能的一个重要指标。样品s-4直径最细,湿度灵敏度最高,因此我们测试了样品s-4的稳定性。在34.8%RH、45.0%RH和60.3%RH的三个固定相对湿度水平下测试了传感器的稳定性。在不同湿度环境下,样品每隔10 min记录一次光谱,记录了样品1 h内的光谱变化。图12显示出记录的三个固定相对湿度值的结果,即外界环境相对湿度为34.8%RH,45.0%RH和60.3%RH时,传感器波长的最大误差分别为0.03 nm, 0.04 nm和0.04 nm,由此表明所提出的传感器的稳定性好。

图 12. 样品s-4的在不同相对湿度下的稳定性测试

Fig. 12. Stability test of sample s-4 under different relative humidity

下载图片 查看所有图片

4 结论

设计制备了一种基于拉锥七芯光纤的湿度传感器。七芯光纤熔接在两段单模光纤中间,利用熔融拉锥技术对七芯光纤进行熔融拉锥,并对该结构进行理论分析和实验研究,实验测得当七芯光纤直径为10 μm左右时折射率灵敏度达到1123 nm/RIU,实验结果与仿真计算结果一致。此外,通过在七芯光纤锥区表面涂覆一层GO薄膜制得湿度传感器,实验测得传感器湿度灵敏度最大为-0.0535 nm/(%RH), 线性度为98.5%。本文提出的传感器,灵敏度高、制备简单、稳定性好,可应用于湿度传感领域。

参考文献

[1] Yeo T L, Sun T, Grattan K T V. Fibre-optic sensor technologies for humidity and moisture measurement[J]. Sensors and Actuators A: Physical, 2008, 144(2): 280-295.

[2] Kolpakov S A, Gordon N T, Mou C, et al. Toward a new generation of photonic humidity sensors[J]. Sensors, 2014, 14(3): 3986-4013.

[3] Zhou J, Fang W, Cao Q, et al. Influence of moisturizer and relative humidity on human emissions of fluorescent biological aerosol particles[J]. Indoor Air, 2017, 27(3): 587-598.

[4] Eden M A, Hill R A, Beresford R, et al. The influence of inoculum concentration, relative humidity, and temperature on infection of greenhouse tomatoes by Botrytis cinerea[J]. Plant Pathology, 1996, 45(4): 795-806.

[5] Rittersma Z M. Recent achievements in miniaturised humidity sensors: a review of transduction techniques[J]. Sensors and Actuators A: Physical, 2002, 96(2/3): 196-210.

[6] Wang Y Q, Shen C Y, Lou W M, et al. Fiber optic humidity sensor based on the graphene oxide/PVA composite film[J]. Optics Communications, 2016, 372: 229-234.

[7] Ascorbe J, Corres J M, Arregui F J, et al. Recent developments in fiber optics humidity sensors[J]. Sensors, 2017, 17(4): E893.

[8] Novais S, Ferreira M, Pinto J. Relative humidity fiber sensor based on multimode interferometer coated with agarose-gel[J]. Coatings, 2018, 8(12): 453.

[9] 张平, 刘彬, 刘正达, 等. 基于氧化石墨烯涂层的侧抛光纤马赫-曾德尔干涉仪温湿度传感器[J]. 光学学报, 2021, 41(3): 0306003.

    Zhang P, Liu B, Liu Z D, et al. Temperature and humidity sensor based on a graphene oxide-coated side-polished fiber Mach-Zehnder interferometer[J]. Acta Optica Sinica, 2021, 41(3): 0306003.

[10] Fan X, Wang Q, Zhou M, et al. Humidity sensor based on a graphene oxide-coated few-mode fiber Mach-Zehnder interferometer[J]. Optics Express, 2020, 28(17): 24682-24692.

[11] Zheng Y Z, Dong X Y, Zhao C L, et al. Relative humidity sensor based on microfiber loop resonator[J]. Advances in Materials Science and Engineering, 2013, 2013: 1-4.

[12] Zhang W, Webb D J, Peng G D. Investigation into time response of polymer fiber Bragg grating based humidity sensors[J]. Journal of Lightwave Technology, 2012, 30(8): 1090-1096.

[13] Jiang B Q, Bi Z X, Hao Z, et al. Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring[J]. Sensors and Actuators B: Chemical, 2019, 293: 336-341.

[14] Chiu Y D, Wu C W, Chiang C C. Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing[J]. Sensors, 2017, 17(9): 2129.

[15] Zhao Y, Tong R J, Chen M Q, et al. Relative humidity sensor based on hollow core fiber filled with GQDs-PVA[J]. Sensors and Actuators B: Chemical, 2019, 284: 96-102.

[16] Liu Y, Deng H C, Yuan L B. A novel polyvinyl alcohol and hypromellose gap-coated humidity sensor based on a Mach-Zehnder interferometer with off-axis spiral deformation[J]. Sensors and Actuators B: Chemical, 2019, 284: 323-329.

[17] Sun L P, Yuan Z H, Huang T S, et al. Ultrasensitive sensing in air based on Sagnac interferometer working at group birefringence turning point[J]. Optics Express, 2019, 27(21): 29501-29509.

[18] 柯伟铭, 李振华, 周智翔, 等. 基于还原氧化石墨烯的干涉型光纤湿度传感器[J]. 光学学报, 2019, 39(12): 1206007.

    Ke W M, Li Z H, Zhou Z X, et al. Reduced graphene oxide-based interferometric fiber-optic humidity sensor[J]. Acta Optica Sinica, 2019, 39(12): 1206007.

[19] 邵敏, 孙浩男, 张蓉, 等. 基于光子晶体光纤的迈克耳孙干涉仪型湿度传感器[J]. 光学学报, 2020, 40(24): 2406002.

    Shao M, Sun H N, Zhang R, et al. Michelson interferometric humidity sensor based on photonic crystal fiber[J]. Acta Optica Sinica, 2020, 40(24): 2406002.

[20] Liu S, Meng H Y, Deng S Y, et al. Fiber humidity sensor based on a graphene-coated core-offset Mach-Zehnder interferometer[J]. IEEE Sensors Letters, 2018, 2(3): 1-4.

[21] Soltanian M R K, Sharbirin A S, Ariannejad M M, et al. Variable waist-diameter Mach-Zehnder tapered-fiber interferometer as humidity and temperature sensor[J]. IEEE Sensors Journal, 2016, 16(15): 5987-5992.

[22] Li L C, Xia L, Xie Z H, et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 2012, 20(10): 11109-11120.

[23] Liu Y, Zhou A, Yuan L B. Sensitivity-enhanced humidity sensor based on helix structure-assisted Mach-Zehnder interference[J]. Optics Express, 2019, 27(24): 35609-35620.

[24] Wang Y Q, Shen C Y, Lou W M, et al. Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide[J]. Applied Physics Letters, 2016, 109(3): 031107.

[25] Gao R, Lu D F, Cheng J, et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide[J]. Sensors and Actuators B: Chemical, 2016, 222: 618-624.

[26] Azzuhri S R, Amiri I S, Zulkhairi A S, et al. Application of graphene oxide based Microfiber-Knot resonator for relative humidity sensing[J]. Results in Physics, 2018, 9: 1572-1577.

徐妍妍, 李俊, 李浩, 赵雨佳, 徐明靖, 刘佳欣, 蒋佩蓁, 周爱. 基于拉锥七芯光纤的湿度传感器研究[J]. 中国激光, 2021, 48(23): 2306002. Yanyan Xu, Jun Li, Hao Li, Yujia Zhao, Mingjing Xu, Jiaxin Liu, Peizhen Jiang, Ai Zhou. Research on Humidity Sensor Based on Tapered Seven Core Fiber[J]. Chinese Journal of Lasers, 2021, 48(23): 2306002.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!