激光技术, 2022, 46 (5): 594, 网络出版: 2022-10-14  

扭曲多高斯光束在梯度折射率光纤中的传输特性

Propagation characteristics of twisted multi-Gaussian beams in gradient index fibers
作者单位
1 太原科技大学 应用科学学院, 太原 030024
2 中国科学院 合肥物质科学研究院 安徽光学精密机械研究所 大气光学重点实验室, 合肥 230031
摘要
为了得到一种新型椭圆扭曲多高斯-谢尔模(TMGSM)光束, 采用Mercer模式展开的方法进行了理论分析和验证, 证明了多高斯-谢尔模关联结构可携带扭曲相位, 详细研究了其在梯度折射率光纤中传输时的光强和相干度演化。结果表明, 椭圆TMGSM光束在梯度折射率光纤中传输时, 光强和相干度分布随着传输距离的增加发生周期性旋转, 并在0.5L(L为周期)的整数倍处偏转π/2, 其旋转角速度呈非线性变化且与扭曲因子的大小有关; 增大多高斯模数, 焦平面处光强分布的平顶区域增大, 相干度分布轮廓变小。此研究结果在光纤通信、聚焦成像、光学捕获等方面具有潜在的应用前景。
Abstract
In order to obtain a new elliptically twisted multi-Gaussian-Schell model beam, a Mercer model expansion method was adopted, the theoretical analysis and verification were carried out. It is proved that the twisted phase can be carried in the multi-Gaussian-Shell model correlation structure, and the intensity and coherence evolution of the beam propagating in gradient index fibers was studied. The results show that when elliptically twisted multi-Gaussian-Schell model beams are propagating in the graded index fibers, the distribution of intensity and coherence rotates periodically with the increase of transmission distance, and the deflection is π/2 degrees at the integer multiples of 0.5L (L is a cycle). The rotation angular velocity is nonlinear and related to the size of the twist factor. With the increase of multi-Gaussian modulus, the flat top region of the intensity distribution at the focal plane increases, and the coherence distribution contour becomes smaller. The research results have potential applications in optical fiber communication, focused imaging, optical capture and so on.
参考文献

[1] SIMON R,MUKUNDA N.Twisted Gaussian Schell-model beams[J]. Journal of the Optical Society of America, 1993, A10(1): 95-109.

[2] SIMON R,MUKUNDA N.Twist phase in Gaussian-beam optics[J]. Journal of the Optical Society of America, 1998, A15(9): 2373-2382.

[3] SERNA J,MOVILLA J M.Orbital angular momentum of partially coherent beams[J]. Optics Letters, 2001, 26(7): 405-407.

[4] FRIBERG A T, TERVONEN E,TURUNEN J.Focusing of twisted Gaussian Schell-model beams[J]. Optics Communications, 1994, 106(4/6): 127-132.

[5] FRIBERG A T, TERVONEN E,TURUNEN J.Interpretation and experimental demonstration of twisted Gaussian Schell-model beams[J]. Journal of the Optical Society of America, 1994, A11(6): 1818-1826.

[6] DING G L,L B D. Propagation of twisted Gaussian Schell-model beams through a misaligned first-order optical system[J]. Journal of Modern Optics, 2009, 48(10): 1617-1621.

[7] ZHAO Ch L, CAI Y J,KOROTKOVA O.Radiation force of scalar and electromagnetic twisted Gaussian Schell-model beams[J]. Optics Express, 2009, 17(24): 21472-21487.

[8] WANG F, CAI Y J, EYYUBOGLU H T,et al.Twist phase-induced reduction in scintillation of a partially coherent beam in turbulent atmosphere[J]. Optics Letters, 2012, 37(2): 184-186.

[9] TONG Zh S,KOROTKOVA O.Beyond the classical Rayleigh limit with twisted light[J]. Optics Letters, 2012, 37(13): 2595-2597.

[10] GORI F,SANTARSIERO M.Devising genuine spatial correlation functions[J]. Optics Letters, 2007, 32(24): 3531-3533.

[11] SAHIN S,KOROTKOVA O.Light sources generating far fields with tunable flat profiles[J]. Optics Letters, 2012, 37(14): 2970-2972.

[12] MEI Zh R,KOROTKOVA O.Cosine-Gaussian Schell-model sources[J]. Optics Letters, 2013, 38(14): 2578-2580.

[13] MEI Zh R,KOROTKOVA O.Random sources generating ring-shaped beams[J]. Optics Letters, 2013, 38(2): 91-93.

[14] DU Sh C, YUAN Y S, LIANG C H,et al.Second-order moments of a multi-Gaussian Schell-model beam in a turbulent atmosphere[J]. Optics & Laser Technology, 2013, 50: 14-19.

[15] ZHANG Y Y,ZHAO D M.Scattering of multi-Gaussian Schell-model beams on a random medium[J]. Optics Express, 2013, 21(21): 24781-24792.

[16] ZHU W T, TANG M M, ZHAO D M.Propagation of multi-Gaussian Schell-model beams in oceanic turbulence[J]. Optik—International Journal for Light and Electron Optics, 2016, 127(8): 3775-3778.

[17] YUAN Y Sh, LIU X L, WANG F,et al.Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013,305: 57-65.

[18] AVRAMOV-ZAMUROVIC S, NELSON C, GUTH S,et al.Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air[J]. Applied Optics, 2016, 55(13): 3442-3446.

[19] LIU X Y,ZHAO D M.Optical trapping Rayleigh particles by using focused multi-Gaussian Schell-model beams[J]. Applied Optics, 2014, 53(18): 3976-3981.

[20] BORGHI R, GORI F, GUATTARI G,et al.Twisted Schell-model beams with axial symmetry[J]. Optics Letters, 2015, 40(19): 4504-4507.

[21] GORI F,SANTARSIERO M.Devising genuine twisted cross-spectral densities[J]. Optics Letters, 2018, 43(3): 595-598.

[22] WU G F.Propagation properties of a radially polarized partially coherent twisted beam in free space[J]. Journal of the Optical Society of America, 2016, A33(3): 345-350.

[23] PENG X F, LIU L, YU J Y,et al.Propagation of a radially polarized twisted Gaussian Schell-model beam in turbulent atmosphere[J]. Journal of Optics, 2016, 18(12): 125601.

[24] FU W Y,CAO P F.Second-order statistics of a radially polarized partially coherent twisted beam in a uniaxial crystal[J]. Journal of the Optical Society of America, 2017, A34(9): 1703-1710.

[25] WAN L P,ZHAO D M.Twisted Gaussian Schell-model array beams[J]. Optics Letters, 2018, 43(15): 3554-3557.

[26] ZHANG J P, WANG J, HUANG H K,et al.Propagation characteristics of a twisted Cosine-Gaussian correlated radially polarized beam[J]. Applied Sciences, 2018,8(9): 1485-1498.

[27] WANG J, HUANG H K, CHEN Y K,et al.Twisted partially coherent array sources and their transmission in anisotropic turbulence[J]. Optics Express, 2018, 26(20): 25974-25988.

[28] STAHL C S D,GBUR G.Twisted vortex Gaussian Schell-model beams[J]. Journal of the Optical Society of America, 2018, A35(11): 1899-1906.

[29] PENG X F, LIU L, WANG F,et al.Twisted Laguerre-Gaussian Schell-model beam and its orbital angular moment[J]. Optics Express, 2018, 26(26): 33956-33969.

[30] WANG H Y, PENG X F, LIU L,et al.Twisted elliptical multi-Gaussian Schell-model beams and their propagation properties[J]. Journal of the Optical Society of America, 2020, A37(1): 89-97.

[31] SONG S H, PARK S, OH C H,et al.Gradient-index planar optics for optical interconnections[J]. Optics Letters, 1998, 23(13): 1025-1027.

[32] PONOMARENKO S A.Self-imaging of partially coherent light in graded-index media[J]. Optics Letters, 2015, 40(4): 566-568.

[33] KUNKEL W M,LEGER J R.Gradient-index design for mode conversion of diffracting beams[J]. Optics Express, 2016, 24(12): 13480-13488.

[34] ROYCHOWDHURY H, AGRAWAL G P,WOLF E.Changes in the spectrum, in the spectral degree of polarization, and in the spectral degree of coherence of a partially coherent beam propagating through a gradient-index fiber[J]. Journal of the Optical Society of America, 2006, A23(4): 940-948.

[35] ZHU Sh J, LIU L, CHEN Y H,et al.State of polarization and propagation factor of a stochastic electromagnetic beam in a gradient-index fiber[J]. Journal of the Optical Society of America, 2013, A30(11): 2306-2313.

[36] SAHIN S, ZHANG M H, CHEN Y H,et al.Transmission of a polychromatic electromagnetic multi-Gaussian Schell-model beam in an inhomogeneous gradient-index fiber[J]. Journal of the Optical Society of America, 2018, A35(9): 1604-1611.

[37] WANG J, YANG Sh, GUO M J,et al.Change in phase singularities of a partially coherent Gaussian vortex beam propagating in a GRIN fiber[J]. Optics Express, 2020, 28(4): 4661-4673.

[38] GAO Y R, GAO X Y, LIN R,et al.Periodic properties of Laguerre-Gaussian correlated Schell-model beams in a gradient-index fiber[J]. Optik—International Journal for Light and Electron Optics, 2021, 228: 165755.

[39] WOLF E.New theory of partial coherence in the space-frequency domain Part Ⅰ: Spectra and cross spectra of steady-state sources[J]. Journal of the Optical Society of America, 1982, 72(3): 343-351.

张雅凯, 郭苗军, 李晋红, 徐翔, 钱仙妹, 朱文越, 王静. 扭曲多高斯光束在梯度折射率光纤中的传输特性[J]. 激光技术, 2022, 46(5): 594. ZHANG Yakai, GUO Miaojun, LI Jinhong, XU Xiang, QIAN Xianmei, ZHU Wenyue, WANG Jing. Propagation characteristics of twisted multi-Gaussian beams in gradient index fibers[J]. Laser Technology, 2022, 46(5): 594.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!