硅酸盐通报, 2022, 41 (6): 2126, 网络出版: 2022-07-24  

Fe2O3原料的预处理对0.7BiFeO3-0.3BaTiO3陶瓷绝缘性与电性能的影响

Effect of Raw Material Pretreatment of Fe2O3 on Insulating and Electrical Properties of 0.7BiFeO3-0.3BaTiO3 Ceramics
作者单位
1 桂林电子科技大学材料科学与工程学院, 桂林 541004
2 桂林电子科技大学, 广西信息材料重点实验室, 桂林 541004
摘要
BiFeO3基无铅压电陶瓷常因漏电流较大而压电性能欠佳, 然而, 改善其绝缘性和电性能的方法都较为复杂, 限制了其产业化生产与应用。本工作在不针对0.7BiFeO3-0.3BaTiO3陶瓷进行组分掺杂以及气氛烧结的条件下, 仅通过简单的原料预处理(改变Fe2O3原料的干燥时间)即实现了其高绝缘性与高压电性能。研究结果表明,0.7BiFeO3-0.3BaTiO3陶瓷的晶粒尺寸和绝缘性随Fe2O3原料干燥时间的增加而增大, 同时其电性能及温度稳定性也随之增强。当原料干燥时间为192 h时, 样品晶粒尺寸最大, 绝缘性最好, 同时其压电性能(d33=203 pC/N,kp=0.33)和居里温度(Tc=460 ℃)也达到最佳。这为今后BiFeO3基陶瓷压电性能的研究提供了一个新思路。
Abstract
BiFeO3-based lead-free piezoelectric ceramics often had poor piezoelectric properties due to large leakage currents. However, the methods of improving its insulating and electrical properties were more complicated, limiting its industrial production and application. In this work, the high insulating and high piezoelectric properties were achieved by simple raw material pretreatment (changing the drying time of Fe2O3 raw material) without component doping and atmosphere sintering of 0.7BiFeO3-0.3BaTiO3 ceramics. The results show that with the increase of the drying time of Fe2O3 raw materials, the grain sizes and insulating of 0.7BiFeO3-0.3BaTiO3 ceramics are significantly improved, and their electrical properties and temperature stability are also significantly enhanced. When the drying time of the raw material is increased to 192 h, the sample grain size is the largest, the insulating is the best, and the piezoelectric properties (d33=203 pC/N, kp=0.33) and Curie temperature (Tc=460 ℃) are also optimal. This provide a new idea for the future study of the piezoelectric properties of BiFeO3-based ceramics.
参考文献

[1] HAERTLING G H. Ferroelectric ceramics: history and technology[J]. Journal of the American Ceramic Society, 1999, 82(4): 797-818.

[2] SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics[J]. Nature, 2004, 432(7013): 84-87.

[3] RDEL J, WEBBER K G, DITTMER R, et al. Transferring lead-free piezoelectric ceramics into application[J]. Journal of the European Ceramic Society, 2015, 35(6): 1659-1681.

[4] RINGGAARD E, WURLITZER T. Lead-free piezoceramics based on alkali niobates[J]. Journal of the European Ceramic Society, 2005, 25(12): 2701-2706.

[5] HU W, TAN X, RAJAN K. BiFeO3-PbZrO3-PbTiO3 ternary system for high Curie temperature piezoceramics[J]. Journal of the European Ceramic Society, 2011, 31(5): 801-807.

[6] ZHANG H, XU P, PATTERSON E, et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics[J]. Journal of the European Ceramic Society, 2015, 35(9): 2501-2512.

[7] ROJAC T, MAKAROVIC M, WALKER J, et al. Piezoelectric response of BiFeO3 ceramics at elevated temperatures[J]. Applied Physics Letters, 2016, 109(4): 042904.

[8] LU Z, WANG G, BAO W, et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors[J]. Energy & Environmental Science, 2020, 13(9): 2938-2948.

[9] WANG G, FAN Z, MURAKAMI S, et al. Origin of the large electro-strain in BiFeO3-BaTiO3 based lead-free ceramics[J]. Journal of Materials Chemistry A, 2019, 7(37): 21254-21263.

[10] ROJAC T, BENCAN A, MALIC B, et al. BiFeO3 ceramics: processing, electrical, and electromechanical properties[J]. Journal of the American Ceramic Society, 2014, 97(7): 1993-2011.

[11] 黄 海,韩立波,顾豪爽.BiFeO3-SrBi2Nb2O9陶瓷的介电与铁电性能研究[J].硅酸盐通报, 2006, 25(6): 17-20+79.

[12] SIMES A, RICCARDI C, DOS SANTOS M, et al. Effect of annealing atmosphere on phase formation and electrical characteristics of bismuth ferrite thin films[J]. Materials Research Bulletin, 2009, 44(8): 1747-1752.

[13] WANG G, LU Z, YANG H, et al. Fatigue resistant lead-free multilayer ceramic capacitors with ultrahigh energy density[J]. Journal of Materials Chemistry A, 2020, 8(22): 11414-11423.

[14] CHANDARAK S, JUTIMOOSIK J, BOOTCHANONT A, et al. Local structure of magnetoelectric BiFeO3-BaTiO3 ceramics probed by synchrotron X-ray absorption spectroscopy[J]. Journal of Superconductivity and Novel Magnetism, 2013, 26(2): 455-461.

[15] LEONTSEV S O, EITEL R E. Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics[J]. Journal of the American Ceramic Society, 2009, 92(12): 2957-2961.

[16] WANG L, LIANG R, ZHOU Z, et al. Electrical conduction mechanisms and effect of atmosphere annealing on the electrical properties of BiFeO3-BaTiO3 ceramics[J]. Journal of the European Ceramic Society, 2019, 39(15): 4727-4734.

[17] YANG H B, ZHOU C R, LIU X Y, et al. Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics[J]. Journal of the European Ceramic Society, 2013, 33(6): 1177-1183.

[18] HUANG S, LI Q, YANG L, et al. Enhanced piezoelectric properties by reducing leakage current in Co modified 0.7BiFeO3-0.3BaTiO3 ceramics[J]. Ceramics International, 2018, 44(8): 8955-8962.

[19] TONG K, ZHOU C, LI Q, et al. Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics[J]. Journal of the European Ceramic Society, 2018, 38(4): 1356-1366.

[20] CHENG S, ZHANG B, ZHAO L, et al. Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 ceramics with high curie temperature[J]. Journal of the American Ceramic Society, 2019, 102(12): 7355-7365.

[21] GUAN S, YANG H, QIAO G, et al. Effects of Li2CO3 and CuO as composite sintering aids on the structure, piezoelectric properties, and temperature stability of BiFeO3-BaTiO3 ceramics[J]. Journal of Electronic Materials, 2020, 49(10): 6199-6207.

[22] LI Z, PENG W, ZHOU C, et al. Enhanced real-time high temperature piezoelectric responses and ferroelectric scaling behaviors of MgO-doped 0.7BiFeO3-0.3BaTiO3 ceramics[J]. Ceramics International, 2018, 44(12): 14439-14445.

[23] CAO W W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1499-1505.

[24] TAN Y, ZHOU C, WANG J, et al. Probing the in-time piezoelectric responses and depolarization behaviors related to ferroelectric-relaxor transition in BiFeO3-BaTiO3 ceramics by in situ process[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(1): 1197-1203.

李玮, 周昌荣, 黎清宁, 李蕊, 侯凌浩, 孟天笑. Fe2O3原料的预处理对0.7BiFeO3-0.3BaTiO3陶瓷绝缘性与电性能的影响[J]. 硅酸盐通报, 2022, 41(6): 2126. LI Wei, ZHOU Changrong, LI Qingning, LI Rui, HOU Linghao, MENG Tianxiao. Effect of Raw Material Pretreatment of Fe2O3 on Insulating and Electrical Properties of 0.7BiFeO3-0.3BaTiO3 Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2126.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!