微电子学, 2022, 52 (4): 640, 网络出版: 2023-01-18  

一种直角螺旋悬臂梁结构的压电能量收集器

A Piezoelectric Energy Harvester with Right Angle Helical Cantilever Structure
作者单位
南京邮电大学 电子与光学工程学院, 南京 210023
摘要
提出了一种2π弧度的直角螺旋悬臂梁结构的压电能量收集器。该设计一方面可以降低谐振频率,另一方面可以提高单位体积的能量收集效率。悬臂梁整体结构厚度为2 mm,宽度为6 mm,整体尺寸大小为22 mm×26 mm。当施加的激励为0.1g加速度时,仿真输出电压为1.95 V,测量输出电压为1.8 V,相对电压误差为7.7%;仿真谐振频率为269 Hz,测量谐振频率为265 Hz,相对频率误差为1.5%;理论输出功率为7.04 μW,测试输出功率最大为5.79 μW,相对功率误差为17.8%。该压电能量收集器适用于便携式微电子系统。
Abstract
A piezoelectric energy harvester with a right angle spiral cantilever structure which had a 2π radian was proposed. This design could reduce the resonant frequency on the one hand and improve the efficiency of energy collection per unit volume on the other hand. The thickness of the cantilever beam was 2 mm, the width was 6 mm, and the overall size was 22 mm×26 mm. When the acceleration of 0.1g excitation was applied, the simulated outpour voltage was 1.95 V, the output voltage measured was 1.8 V, and the relative voltage error was 7.7%. The simulated resonant frequency was 269 Hz, the measured resonant frequency was 265 Hz, and the relative frequency error was 1.5%. The theoretical output power was 7.04 μW, the measured output power was 5.79 μW, and the relative power error was 17.8%. This piezoelectric energy harvester had a wide application prospect in power supply of portable microelectronic devices.
参考文献

[1] 李旭. 压电式能量收集器发展现状及产品研究 [J]. 装备制造技术, 2018,(5): 82-85.

[2] 郭丽, 周星德, 杨菁. 悬臂式压电能量采集器模型修正 [J]. 压电与声光, 2020, 42(6): 777-781.

[3] SAFAEI M, SODANO H A, ANTON S R. A review of energy harvesting using piezoelectric materials: state-of-the-art a decade later (2008–2018) [J]. Smart Mater & Structu, 2019, 28(11): 113001.

[4] ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials [J]. Smart Mater & Structu, 2007, 16(3): R1-R21.

[5] KOYAMA D, NAKAMURA K. Electric power generation using vibration of a polyurea piezoelectric thin film [J]. Appl Acoust, 2009, 71(5): 439-445.

[6] LU F, LEE H, LIM S. Modeling and analysis of micro piezoelectric power generators for micro- electromechanical-systems applications [J]. Smart Mater & Structu, 2004, 13(1): 57-63.

[7] FANG H,LIU J,XU Z. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting [J]. Microelec, 2006, 37(11): 1280-1284

[8] 李如春, 征琦, 施朝霞. 微型之字形压电式能量收集器输出电压的建模和仿真 [J]. 传感技术学报, 2015, 28(5): 629-634.

[9] DEBNATH B, KUMAR R. Design and simulation study of a new flared-U shaped springs based MEMS piezoelectric vibration energy harvester [C]// IEEE Int Conf Comput Power & Commun Technol. Greater Noida, India. 2020: 101-105.

[10] 陈仲生. 压电式振动能量俘获理论与方法 [M]. 北京: 国防工业出版社, 2017: 39-45.

[11] MOCHIDA Y, ILANKO S. On the Rayleigh-Ritz method, Gorman's superposition method and the exact dynamic stiffness method for vibration and stability analysis of continuous systems [J]. Thin-Walled Structu, 2021, 161: 107470.

[12] 刘祥建, 陈仁文. Rainbow型压电单膜片换能结构负载电压和输出功率分析 [J]. 航空学报, 2011, 32(3): 561-570.

[13] HUANG P C, TSAI T H, YANG Y J. Wide-bandwidth piezoelectric energy harvester integrated with parylene-C beam structures [J]. Microelec Engineer, 2013, 111: 214-219.

[14] 高翔, 石树正, 徐方良, 等. 基于四螺旋梁-质量块的MEMS压电能量采集器 [J]. 微纳电子技术, 2018, 55(1): 32-37.

[15] 李莉, 林杉杉, 王军, 等. 基于涡致振动的T型悬臂梁压电俘能结构的仿真与实验研究 [J]. 仪表技术与传感器, 2021(7): 32-37.

周佳成, 薛至诚, 王德波. 一种直角螺旋悬臂梁结构的压电能量收集器[J]. 微电子学, 2022, 52(4): 640. ZHOU Jiacheng, XUE Zhicheng, WANG Debo. A Piezoelectric Energy Harvester with Right Angle Helical Cantilever Structure[J]. Microelectronics, 2022, 52(4): 640.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!