中国光学, 2018, 11 (4): 610, 网络出版: 2018-07-30   

掺铥光纤γ射线辐照效应实验研究

Experimental investigation of gamma-ray irradiation effect on Tm-doped fibers
作者单位
1 中国科学院 上海光学精密机械研究所 上海市全固态激光器与应用技术重点实验室,上海 201800
2 西北核技术研究所 激光与物质相互作用国家重点实验室,陕西 西安 710024
3 哈尔滨工业大学 空间环境材料行为与评价技术国家级重点实验室,黑龙江 哈尔滨 150001
摘要
面向2 μm掺铥光纤激光器的空间应用,本文针对典型商用掺铥光纤(TDF)开展了γ射线辐照效应实验研究。利用60Co源放射的γ射线,对由5段同批次Nufern公司SM-TDF-10P/130-HE型TDF样品搭建的2 μm光纤激光器进行总剂量为90 krad(Si)、剂量率为05~30 rad/s的辐照效应在线测试。结果表明,TDF的出光性能在辐照过程中出现了显著衰减,衰减幅度随着剂量率的上升而增大。通过对TDF样品在辐照前和辐照后的吸收光谱进行对比测试,观察到在经过总剂量9 krad(Si)的γ射线辐照后,TDF对793 nm泵浦光的吸收峰接近消失。对前述经历γ辐照之后的TDF样品进行2 h的793 nm泵浦光漂白实验测试,未见其出现性能恢复现象。可见,面向空间应用的该典型掺铥光纤需大力提高耐空间辐射性能。
Abstract
In order to realize the space application of 2 μm thulium-doped fiber laser, the experimental study of γ-ray irradiation effect is carried out for typical commercial Tm-doped fiber(TDF). Using a gamma ray of 60Co, the irradiation effect of a total dose of 90 krad(Si) and a dose rate of 05-30 rad/s is performed on a 2 μm fiber laser constructed from 5 groups of the same TDF samples batch of SM-TDF-10P/130-HE produced by Nufern. The measurement results show that the light emission performance of TDF greatly attenuated during irradiation, and the attenuation amplitude increases with the increase of the dose rate. By comparing the absorption spectra of the TDF sample before and after irradiation, it is found that the absorption peak of the 793 nm pump light disappeared with the irradiation of the total dose of 9 krad(Si). The above-mentioned irradiated TDF sample is subjected to a 793 nm pump photobleaching test for 2 hours, and no performance recovery is observed. It can be seen that the space radiation performance of typical Tm-doped fiber has to be improved for space applications.
参考文献

[1] RICHARDSON D J,NILSSON J,CLARKSON W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B,2010,27(11): B63-B92.

[2] 顾宏灿,黄俊斌,程玲,等.20~1250 Hz光纤激光加速度传感系统设计[J].中国光学,2017,10(4): 469-476.

    GU H C,HUANG J B,CHENG L,et al.. 20~1250 Hz fiber laser acceleration sensing system[J]. Chinese Optics,2017,10(4): 469-476.(in Chinese)

[3] 高静,于峰,匡鸿深,等.纳秒声光调Q光纤激光器产生超连续谱[J].光学 精密工程,2014,22(5): 1138-1142.

    GAO J,YU F,KUANG H SH,et al.. Generation of supercontinuum spectra from acousto-optic Q-switched nanosecond fiber lasers[J]. Opt. Precision Eng.,2014,22(5): 1138-1142.(in Chinese)

[4] 王智勇,张晶,葛廷武,等.高功率高耦合效率光纤模场匹配器[J].光学 精密工程,2015,23(2): 319-324.

    WANG ZH Y,ZHANG J,GE T W,et al.. Highly coupling efficient mode-field adaptors for high power fiber lasers[J]. Opt. Precision Eng.,2015,23(2): 1138-1142.(in Chinese)

[5] 李充,谢冀江,潘其坤,等.中红外光学参量振荡器研究进展[J].中国光学,2016,9(6): 615-624.

    LI CH,XIE J J,PAN Q K,et al.. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics,2016,9(6): 615-624.(in Chinese)

[6] TAO M M,YANG P L,LIU W P. Response characteristics of fiber Bragg gratings irradiated by high energy lasers[J]. Chinese Optics,2012,5(5): 544-549.

[7] 沈自才.空间辐照环境工程[M].北京: 中国宇航出版社,2013.

    SHEN Z C. Space Radiation Environment Engineering[M]. Beijing: China Astronautic Publishing House,2013.(in Chinese)

[8] MA J,LI M,TAN L,et al.. Experimental investigation of radiation effect on erbium-ytterbium co-doped fiber amplifier for space optical communication in low-dose radiation environment[J]. Optics Express,2009,17(18): 15571-15577.

[9] YENIAY A,GAO R F. Radiation induced loss properties and hardness enhancement technique for ErYb doped fibers for avionic applications[J]. Optical Fiber Technology,2013,19: 88-92.

[10] GUSAROV A I,DOYLE D B. Modeling of gamma-radiation impact on transmission characteristics of optical glasses[J]. SPIE,2002,4547: 78-85.

[11] 徐静.光电耦合器件在空间辐射环境下的性能研究[D].哈尔滨: 哈尔滨工业大学,2013: 39.

    XU J. Study on space radiation effect of optocoupler[D]. Harbin: Harbin Institute of Technology,2013: 39.(in Chinese)

[12] WANG Q,TIAN C P,WANG Y Y,et al.. Review of radiation hardening techniques for EDFAs in space environment[J]. SPIE,2014,9521: 9521D1-6.

[13] FOX B P,SIMMONS-POTTER K,KLINER D A V,et al.. Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers[J]. Journal of Non-Crystalline Solids,2013,387: 79-88.

[14] TAYLOR E W,LIU J. Ytterbium-doped fiber laser behavior in a gamma-ray environment[J]. Proceedings of SPIE,2005,5897: 58970E.

[15] XING Y B,ZHAO N,LIAO L. Active radiation hardening of Tm-doped silica fiber based on pump bleaching[J]. Optics Express,2015,23(19): 24236-24245.

[16] XING Y B,HUANG H Q,ZHAO N. Pump bleaching of Tm-doped fiber with 793 nm pump source[J]. Optics Letters,2015,40(5): 681-684.

吴闻迪, 余婷, 陶蒙蒙, 李兴冀, 叶锡生. 掺铥光纤γ射线辐照效应实验研究[J]. 中国光学, 2018, 11(4): 610. WU Wen-di, YU Ting, TAO Meng-meng, LI Xing-ji, YE Xi-sheng. Experimental investigation of gamma-ray irradiation effect on Tm-doped fibers[J]. Chinese Optics, 2018, 11(4): 610.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!