人工晶体学报, 2023, 52 (2): 252, 网络出版: 2023-03-18  

h-BN型超晶格等离子体光子晶体能带特性研究

Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals
作者单位
河北大学物理科学与技术学院,保定 071002
摘要
六方氮化硼(h-BN)晶格结构是一种类六方对称复式超晶格结构。具有h-BN晶格构型的光子晶体以其宽光子带隙特点受到国内外学者的广泛关注。本文利用不同尺度低压气体放电管与Al2O3介质棒周期性排列,构建了新型h-BN型超晶格等离子体光子晶体,实现其空间结构和等离子体参数的动态调控。利用微波透射谱对比研究了h-BN型超晶格与简单三角晶格等离子体光子晶体禁带位置、宽度和数目。分析了放电电流、介质棒阵列数对不同频段光子带隙的影响,以及电磁波入射角度对电磁传输特性的影响。结果表明:等离子体的引入不仅能够形成新的光子带隙,而且可以选择性地使部分禁带位置发生移动;相对于简单三角晶格,h-BN型超晶格等离子体光子晶体呈现出更多光子带隙;Al2O3介质棒阵列数对等离子体光子晶体禁带位置、宽度和数目均具有重要影响。电磁波入射角度变化越大,电磁传输特性差别越显著,透射谱相关性越差。本文所设计的新型h-BN型超晶格等离子体光子晶体为制作可调谐光子晶体提供了新的思路,在微波和太赫兹波控制领域具有潜在应用价值。
Abstract
Hexagonal boron nitride (h-BN) lattice structure is a kind of hexagonal symmetric complex superlattice structure. In recent years, photonic crystals with h-BN superlattice structure have attracted growing attentions due to their unique properties of wide photonic band gaps. A new h-BN superlattice plasma photonic crystal (SPPC) constructed by periodically arranging gas discharge tubes and Al2O3 dielectric rods is proposed in this paper. The positions, widths and numbers of band gaps for h-BN superlattice and triangular lattice plasma photonic crystal (PPC) have been compared. The effects of the discharge current, numbers of dielectric rod rows and incident angles of electromagnetic waves in different frequencies have been demonstrated. The results show that the introduction of plasma enables tunable structural configurations and plasma parameters for h-BN SPPC. It not only produces new photonic band gaps, but also selectively shifts the band gap positions. Compared with the simple triangular PPC, h-BN SPPC possesses more photonic band gaps. Moreover, the numbers of dielectric rod rows have significant influences on the positions, widths and numbers of band gaps. The correlation of transmission spectra decrease with the increase of incident angle of electromagnetic waves. The novel h-BN SPPC suggested in this work provides some inspiration for creating new types of tunable metamaterials, which has potential applications in the manipulation of microwave and terahertz waves.
参考文献

[1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.

[2] YABLONOVITCH E. How to be truly photonic[J]. Science, 2000, 289: 557- 559.

[3] 沈晓鹏, 韩 奎, 李海鹏, 等. 光子晶体自准直光束偏振分束器[J]. 物理学报, 2008, 57(3): 1737-1741.

[4] 周博林, 李国辉, 吴建红, 等. 低阈值钙钛矿光子晶体激光器[J]. 激光与光电子学进展, 2022, 59(5): 49-64.

[5] 纪 雨. 低阈值光子晶体激光器[J]. 光电子技术与信息, 2004, 17(4): 54.

[6] 郑婉华, 王宇飞, 周文君, 等. 超低阈值横向腔光子晶体面发射激光器[J]. 红外与激光工程, 2012, 41(12): 3198-3201.

[7] 刘 薇, 孙晓红, 王 帅, 等. Sun-flower型渐变光子晶体自聚焦透镜[J]. 红外与激光工程, 2017, 46(11): 177-183.

[8] 陈素娟, 周崇喜, 邱传凯, 等. 三维梯度光子晶体聚焦透镜[J]. 光学学报, 2010, 30(8): 2427-2431.

[9] MASAHIRO Y, MENAKA D Z, KENJI I, et al. Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR[J]. Journal of Physics: Photonics, 2021, 3(2): 022006.

[10] MOUSSA R, FOTEINOPOULOU S, ZHANG L, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal[J]. Physical Review B-Condensed Matter and Materials Physics, 2005, 71(8): 085106.

[11] ANDERSON C M, GIAPIS K P. Larger two-dimensional photonic band gaps[J]. Physical Review Letters, 1996, 77(14): 2949-2952.

[12] 刘晨晨, 何一凡, 蒋青云, 等. 含六方氮化硼的一维光子晶体的光学特性[J]. 量子光学学报, 2020, 26(1): 47-54.

[13] CHAUDHARI M K, CHAUDHARI S. Tuning photonic bands in plasma metallic photonic crystals[J]. Physics of Plasmas, 2016, 23(11): 112118.

[14] WANG B, CAPPELLI M A. A tunable microwave plasma photonic crystal filter[J]. Applied Physics Letters, 2015, 107(17): 171107.

[15] YIN Y, XU H, YU M Y, et al. Bandgap characteristics of one-dimensional plasma photonic crystal[J]. Physics of Plasmas, 2009, 16(10): 102103.

[16] SHUKLA S, PRASAD S, SINGH V. Properties of surface modes in one dimensional plasma photonic crystals[J]. Physics of Plasmas, 2015, 22(2): 022122.

[17] 刘 崧, 刘少斌, 王身云. 可调缺陷层等离子体光子晶体的滤波特性分析[J]. 光电工程, 2010, 37(2): 146-150.

[18] SUN P P, ZHANG R Y, CHEN W Y, et al. Dynamic plasma/metal/dielectric photonic crystals in the mm-wave region: electromagnetically-active artificial material for wireless communications and sensors[J]. Applied Physics Reviews, 2019, 6(4): 041406.

[19] 李 伟, 张海涛, 巩马理, 等. 等离子体光子晶体[J]. 光学技术, 2004, 30(3): 263-266.

[20] SAKAI O, TACHIBANA K. Plasmas as metamaterials: a review[J]. Plasma Sources Science and Technology, 2012, 21(1): 013001.

[21] SAKAI O, SAKAGUCHI T, TACHIBANA K. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J]. Applied Physics Letters, 2005, 87(24): 241505.

[22] WANG B, CAPPELLI M A. A plasma photonic crystal bandgap device[J]. Applied Physics Letters, 2016, 108(16): 161101.

[23] WANG B, RODRGUEZ J A, CAPPELLI M A. 3D woodpile structure tunable plasma photonic crystal[J]. Plasma Sources Science and Technology, 2019, 28(2): 02LT01.

[24] WANG B, RODRGUEZ J A, MILLER O, et al. Reconfigurable plasma-dielectric hybrid photonic crystal as a platform for electromagnetic wave manipulation and computing[J]. Physics of Plasmas, 2021, 28(4): 043502.

[25] MATLIS E H, CORKE T C, NEISWANDER B, et al. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial[J]. Journal of Applied Physics, 2018, 124(9): 093104.

[26] TAN H Y, JIN C G, ZHUGE L J, et al. Air-like plasma frequency in one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2019, 26(5): 052107.

[27] ZHANG L, OUYANG J T. Experiment and simulation on one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2014, 21(10): 103514.

[28] ZHANG W D, WANG H T, ZHAO X L, et al. Bandgap-tunable device realized by ternary plasma photonic crystals arrays[J]. Physics of Plasmas, 2020, 27(6): 063508.

[29] YAO J F, YUAN C X, LI H, et al. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission[J]. AIP Advances, 2019, 9(6): 065302.

[30] WANG R G, LI B, ZHANG T K, et al. The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 41-48.

[31] WU Z C, DONG M F, FAN W L, et al. Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 117-124.

武振宇, 贾萌萌, 侯笑含, 刘富成, 范伟丽. h-BN型超晶格等离子体光子晶体能带特性研究[J]. 人工晶体学报, 2023, 52(2): 252. WU Zhenyu, JIA Mengmeng, HOU Xiaohan, LIU Fucheng, FAN Weili. Band Gap Characteristics of h-BN Superlattice Plasma Photonic Crystals[J]. Journal of Synthetic Crystals, 2023, 52(2): 252.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!