硅酸盐通报, 2022, 41 (2): 496, 网络出版: 2022-08-06  

焚烧垃圾渣生态型超高性能混凝土研究

Study on Ecological Ultra-High Performance Concrete with Waste Incineration Slag
作者单位
1 华北水利水电大学土木与交通学院,郑州 450000
2 广东省水利水电科学研究院,广州 510610
摘要
制备一种低成本、环保型焚烧垃圾渣超高性能混凝土(UHPC)。根据修正后的Andreasen and Andersen模型进行配合比设计,将处理后焚烧垃圾渣替代河砂,制备不同替换率超高性能混凝土,并对其进行工作性能、力学性能、孔隙特征、水化过程、微观特征以及毒性固结性能测试。结果表明,随着垃圾渣的加入,UHPC的工作性能和抗压强度有所下降,但流动性不低于240 mm,抗压强度不低于117 MPa,累计孔隙含量增加,孔隙大部分分布在<20 nm无害孔范围内,混凝土界面过渡区裂缝增多,混凝土中锌(Zn)、铅(Pb)和铬(Cr)重金属的离子浸出浓度均低于国标限值,有效地实现了对重金属元素的固结。
Abstract
A kind of low cost and environmental protection ultra-high performance concrete (UHPC) was prepared. According to the modified Andreasen and Andersen model, the mix proportion design was carried out. Using waste incineration slag instead of the river sand to prepare different replacement rates of UHPC, and the working performance, mechanical properties, pore characteristics, hydration process, microscopic characteristics and toxic consolidation performance were tested. The results show that with the addition of garbage residue, the working performance and compressive strength of UHPC decrease, but the fluidity is no less than 240 mm and the compressive strength is no less than 117 MPa. The cumulative pore content increases, most of the pores are distributed in the harmless pore range of <20 nm, and the cracks in the transition zone of concrete interface increase.The concentration of Zn, Pb and Cr in concrete are all lower than the limit value of national standard, which achieves effective consolidation of heavy metals.
参考文献

[1] SAUVE G, VAN ACKER K. The environmental impacts of municipal solid waste landfills in Europe: a life cycle assessment of proper reference cases to support decision making[J]. Journal of Environmental Management, 2020, 261: 110216.

[2] ZHANG J J, ZHANG S G, LIU B. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: a review[J]. Journal of Cleaner Production, 2020, 250: 119507.

[3] LUO Y F, WU Y G, SHU J, et al. Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site[J]. Environmental Pollution, 2019, 253: 330-341.

[4] CHEN S S, HUANG J L, XIAO T T, et al. Carbon emissions under different domestic waste treatment modes induced by garbage classification: case study in pilot communities in Shanghai[J]. Science of the Total Environment, 2020, 717: 137193.

[5] LI X G, LIU Z L, LV Y, et al. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete[J]. Construction and Building Materials, 2018, 178: 175-182.

[6] KUO W T, LIU C C, SU D S. Use of washed municipal solid waste incinerator bottom ash in pervious concrete[J]. Cement and Concrete Composites, 2013, 37: 328-335.

[7] NAZARI A, RIAHI S. Effects of CuO nanoparticles on microstructure, physical, mechanical and thermal properties of self-compacting cementitious composites[J]. Journal of Materials Science & Technology, 2011, 27(1): 81-92.

[8] 范定强,水中和,余 睿,等.铅锌尾矿回收制备环保型超高性能混凝土研究[J].硅酸盐通报,2018,37(7):2231-2236.

[9] GUPTA N, KLUGE M, CHADIK P A, et al. Recycled concrete aggregate as road base: leaching constituents and neutralization by soil Interactions and dilution[J]. Waste Management, 2018, 72: 354-361.

[10] VAN DEN HEEDE P, RINGOOT N, BEIRNAERT A, et al. Sustainable high quality recycling of aggregates from waste-to-energy, treated in a wet bottom ash processing installation, for use in concrete products[J]. Materials, 2015, 9(1): 9.

[11] RONG Z D, WANG Y L, WU S P. Dynamic compression behavior of ultra-high performance cement-based composite with hybrid steel fiber reinforcements[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2020, 35(5): 900-907.

[12] GHAFARI E, GHAHARI S A, COSTA H, et al. Effect of supplementary cementitious materials on autogenous shrinkage of ultra-high performance concrete[J]. Construction and Building Materials, 2016, 127: 43-48.

[13] ALSALMAN A, DANG C N, MICAH HALE W. Development of ultra-high performance concrete with locally available materials[J]. Construction and Building Materials, 2017, 133: 135-145.

[14] WANG X P, YU R, SHUI Z H, et al. Mix design and characteristics evaluation of an eco-friendly ultra-high performance concrete incorporating recycled coral based materials[J]. Journal of Cleaner Production, 2017, 165: 70-80.

[15] ZHAO S J, FAN J J, SUN W. Utilization of iron ore tailings as fine aggregate in ultra-high performance concrete[J]. Construction and Building Materials, 2014, 50: 540-548.

[16] WANG X P, YU R, SHUI Z H, et al. Optimized treatment of recycled construction and demolition waste in developing sustainable ultra-high performance concrete[J]. Journal of Cleaner Production, 2019, 221: 805-816.

[17] YANG R, YU R, SHUI Z H, et al. Environmental and economical friendly ultra-high performance-concrete incorporating appropriate quarry-stone powders[J]. Journal of Cleaner Production, 2020, 260: 121112.

[18] CWIRZEN A, PENTTALA V, VORNANEN C. Reactive powder based concretes: mechanical properties, durability and hybrid use with OPC[J]. Cement and Concrete Research, 2008, 38(10): 1217-1226.

[19] YU R, SPIESZ P, BROUWERS H J H. Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Cement and Concrete Research, 2014, 56: 29-39.

[20] MEHDIPOUR I, KHAYAT K H. Effect of particle-size distribution and specific surface area of different binder systems on packing density and flow characteristics of cement paste[J]. Cement and Concrete Composites, 2017, 78: 120-131.

[21] YU Q L, SPIESZ P, BROUWERS H J H. Ultra-lightweight concrete: conceptual design and performance evaluation[J]. Cement and Concrete Composites, 2015, 61: 18-28.

[22] 张志豪,水中和,余 睿,等.自密实型超高性能混凝土(UHPC)的优化设计与性能研究[J].硅酸盐通报,2017,36(12):4097-4103.

[23] YANG R, YU R, SHUI Z H, et al. The physical and chemical impact of manufactured sand as a partial replacement material in ultra-high performance concrete (UHPC)[J]. Cement and Concrete Composites, 2019, 99: 203-213.

[24] KREJSOV J, DOLEELOV M, PERNICOV R, et al. The influence of different aggregates on the behavior and properties of gypsum mortars[J]. Cement and Concrete Composites, 2018, 92: 188-197.

[25] KASU S R, DEB S, MITRA N, et al. Influence of aggregate size on flexural fatigue response of concrete[J]. Construction and Building Materials, 2019, 229: 116922.

[26] LI Y, TENG N, LIU R Q, et al. Effect of particle size distribution of slag on the strength and pore structure of low-temperature concrete[J]. IOP Conference Series: Materials Science and Engineering, 2019, 587(1): 012008.

[27] WANG X Y, CUI X J, ZHAO Y L, et al. Nano-bio interactions: the implication of size-dependent biological effects of nanomaterials[J]. Science China Life Sciences, 2020, 63(8): 1168-1182.

[28] 褚洪岩,蒋金洋,李 荷,等.环保型细集料对超高性能混凝土力学性能的影响[J].材料导报,2020,34(24):24029-24033.

郭晓宁, 李兆恒, 吕亚军, 管俊峰, 郝颖, 杨龙宾. 焚烧垃圾渣生态型超高性能混凝土研究[J]. 硅酸盐通报, 2022, 41(2): 496. GUO Xiaoning, LI Zhaoheng, LYU Yajun, GUAN Junfeng, HAO Ying, YANG Longbin. Study on Ecological Ultra-High Performance Concrete with Waste Incineration Slag[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(2): 496.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!