硅酸盐学报, 2022, 50 (10): 2770, 网络出版: 2023-01-22  

银-氧化锌-黑滑石复合材料的制备及抑菌性能

Preparation and Antibacterial Properties of Ag-ZnO/Talc
吴海燕 1,2,3,*孟宇航 4易涵 1,2,3陈莹 1,2,3杨华明 1,2,3,4
作者单位
1 中国地质大学(武汉)纳米矿物材料及应用教育部工程研究中心, 武汉 430074
2 中国地质大学(武汉)材料与化学学院, 武汉 430074
3 中国非金属矿行业矿物功能材料重点实验室, 武汉 430074
4 中南大学资源加工与生物工程学院, 长沙 410083
摘要
为获得抗菌性能优良的材料, 选用江西广丰黑滑石作为基体材料制备了Ag-ZnO/Talc三元复合材料, 并采用扫描电子显微镜、透射电子显微镜、X射线衍射和X射线光电子能谱等分析手段对复合材料进行表征, 以大肠杆菌和金黄色葡萄球菌为实验菌株采用平板计数法、抑菌圈法对复合材料抗菌性能进行试验。结果表明: 黑滑石的片层状结构促进纳米颗粒分散, 增大复合材料与细菌的接触面积; Ag-ZnO/Talc三元复合材料具有高的抗菌活性, 对大肠杆菌和金黄色葡萄球菌的抑菌率可达到99%以上。
Abstract
To obtain materials with superior antibacterial properties, Ag-ZnO/Talc ternary composite was prepared by a water-bath heating method with black talc (from Guangfeng, Jiangxi) as a matrix material. The composite was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, respectively. Escherichia coli and staphylococcus aureus were used as the experimental strains. The antibacterial properties of the composite were examined by a plate counting method and a bacteriostatic zone method. The results show that the layered structure of talc sheet promotes the dispersion of nanoparticles and increases the contact area between the composite and bacteria. The Ag-ZnO/Talc composite displays a high antibacterial activity, and the antibacterial rate against escherichia coli and staphylococcus aureus reaches more than 99%.
参考文献

[1] CHEN X, LIAO B Y, PENG X, et al. The microbial coinfection in COVID-19[J]. Appl Microbiol Biotechnol, 2020, 104(18): 7777- 7785.

[2] BEEGIC N, BENER M, APAK R. Development of a green synthesized silver nanoparticle-based antioxidant capacity method using carob extract[J]. J Nanostructure Chem, 2021, 11(3): 381-394.

[3] YE Z K, ZHU H S, ZHANG S, et al. Highly efficient nanomedicine from cationic antimicrobial peptide-protected Ag nanoclusters[J]. J Mater Chem B, 2021, 9(2): 307-313.

[4] LUO H, YIN X Q, TAN P F, et al. Polymeric antibacterial materials: Design, platforms and applications[J]. J Mate Chem, 2021, 9(12): 2802-2815.

[5] SMIRNOV N A, KUDRYASHOV S I, NASTULYAVICHUS A, et al. Antibacterial properties of silicon nanoparticles[J]. Laser Phys Lett, 2018, 15(10): 1-5.

[6] BAKER C, PRADHAN A, PAKSTIS L. Synthesis and antibacterial properties of silver nanoparticles[J]. J Nanosci Nanotechnol, 2005, 5(2): 244-249.

[7] JOARDAR S, ADAMS M L, BISWAS R, et al. Direct synthesis of silver nanoparticles modified spherical mesoporous silica as efficient antibacterial materials[J]. Microporous Mesoporous Mater, 2021, 313: 110824.

[8] WIDYA C P, HABIBI H, GANI P, et al. Clitorea ternatea-mediated silver nanoparticle-doped hydroxyapatite derived from cockle shell as antibacterial material [J]. Che Phys Lett, 2021, 769: 138412.

[9] SUSILOWA E, MARYANI, ASHADI. Green synthesis of silver-chitosan nanocomposite and their application as antibacterial material[J]. J Phys Conf Ser, 2019, 1153, 012135.

[10] SHAHID S, KHAN S A, AHMAD W, et al. Size-dependent bacterial growth inhibition and antibacterial activity of Ag-doped ZnO nanoparticles under different atmospheric conditions [J]. Indian J Pharm Sci, 2017, 80(1): 1-8.

[11] PASCARIU P, COJOCARU C, SAMOILA P, et al. Photocatalytic and antimicrobial activity of electrospun ZnO: Ag nanostructures[J]. J Alloys Compd, 2020, 834: 155144.

[12] ZHANG Y, GAO X J, ZHI L, et al. The synergetic antibacterial activity of Ag islands on ZnO Ag/ZnO) heterostructure nanoparticles and its mode of action[J]. J Inorg Biochem, 2014, 130: 74-83.

[13] WU Z X. Talking about the new uses of several inorganic antibacterial materials[J]. J Phys Conf Ser, 2021, 1965(1), 012076.

[14] KHAN S H, PATHAK B, FULEKAR M H. A study on the influence of metal (Fe, Bi, and Ag) doping on structural, optical, and antimicrobial activity of ZnO nanostructures[J]. Adv Compos Hybrid Mater, 2020, 3(4): 551-569.

[15] DINC V, MOCANU A, ISOPENCU G, et al. Biocompatible pure ZnO nanoparticles-3D bacterial cellulose biointerfaces with antibacterial properties[J]. Arab J Chem, 2020, 13: 3521-3533.

[16] MA J Z. Research progress on antibacterial materials of nano-ZnO[J]. Funct Mater, 2014, 45(24): 24001-24007.

[17] HUANG F, GAO Y, ZHANG Y M, et al. Silver-Decorated Polymeric Micelles Combined with Curcumin for Enhanced Antibacterial Activity[J]. ACS Appl Mater Interfaces, 2017, 9(20): 16881-16890.

[18] PANICKER S, AHMADY I. M, HAN C, et al. On demand release of ionic silver from gold-silver alloy nanoparticles: fundamental antibacterial mechanisms study[J]. Mater Today Chem, 2020, 16: 100237.

[19] WU K H, WANG J C, HUANG J Y, et al. Preparation and antibacterial effects of Ag/AgCl-doped quaternary ammonium-modified silicate hybrid antibacterial material[J]. Mater Sci Eng C, 2019, 98: 177-184.

[20] YIN I X, ZHANG J, ZHAO I S, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020, 15: 2555-2562.

[21] KORA, ARUNA J, ARUNACHALAM J. Assessment of antibacterial activity of silver nanoparticles on Pseudomonas aeruginosa and its mechanism of action[J]. World J Microbiol Biotechnol, 2011, 27(5): 1209-1216.

[22] LI C X, WANG R C, LU X C, et al. Mineralogical characteristics of unusual black talc ores in Guangfeng county, Jiangxi province, China[J]. Appl Clay Sci, 2013, 33(S1): 101.

[23] ZONG P X, Present situation and development trend of black talc industry in China[J]. China Non-Metallic Mining Industry Herald, 2014, 1: 1-3.

[24] LI C X, WANG R C, XU H F, et al. Interstratification of graphene-like carbon layers within black talc from Southeastern China: Implications to sedimentary talc formation[J]. Am Mineral, 2016, 101(7): 1668-1678.

[25] WANG M H, LI J. Application prospect of Guangfeng black talc in Jingdezhen ceramic industry[J]. Foshan Ceram, 2021, 31(10): 1-3.

[26] SHUAI H, WANG J, WANG X G, et al. Black Talc-Based TiO2/ZnO Composite for Enhanced UV-Vis Photocatalysis Performance[J]. Adv Mater, 2021, 14, 6474.

[27] LI C X, WANG R, LU X C, et al. Mineralogical characteristics of unusual black talc ores in Guangfeng County, Jiangxi Province, China[J]. Appl Clay Sci, 2013: 37-46.

[28] WU X W, ZHAO H, ZHANG Z J, et al. Study on phase behavior of talc at high temperature and properties of its composites[J]. Adv Ceram, 2017, 38(4): 476-480.

[29] CHEN Y R, LI X M, ZHENG S L. Research on superfine grinding process and kinetics of calcined black talc in planetary mill[J]. Proced Eng, 2015, 102: 379-387.

[30] ZHAO L P. Road of industrialization of Guangfeng black talc[N]. China Min News, 2013(C02).

吴海燕, 孟宇航, 易涵, 陈莹, 杨华明. 银-氧化锌-黑滑石复合材料的制备及抑菌性能[J]. 硅酸盐学报, 2022, 50(10): 2770. WU Haiyan, MENG Yuhang, YI Han, CHEN Ying, YANG Huaming. Preparation and Antibacterial Properties of Ag-ZnO/Talc[J]. Journal of the Chinese Ceramic Society, 2022, 50(10): 2770.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!