电光与控制, 2023, 30 (9): 0085, 网络出版: 2024-01-17  

基于滑模预测控制的水面无人船轨迹跟踪研究

Trajectory Tracking of Unmanned Surface Vessels Based on Sliding Mode Predictive Control
作者单位
大连海事大学, 辽宁 大连 116000
摘要
针对全驱动无人船(USV)的轨迹跟踪问题, 提出了一种模型预测控制和积分滑模控制相结合的双层控制方法。首先, 针对无人船系统的运动学模型, 设计模型预测控制器(MPC)根据期望轨迹得到满足约束条件的期望速度信号; 针对动力学模型, 设计积分滑模控制器(ISMC)使得系统在外界干扰存在的情况下, 实现对期望信号的跟踪, 提高了系统的鲁棒性; 设计非线性干扰观测器对外界干扰进行估计, 并在控制律的设计过程中进行补偿; 最后, 采用李雅普诺夫方法证明了系统的稳定性。数值仿真证明了两者的结合可以有效地实现全驱动无人船的轨迹跟踪。
Abstract
To solve the problem of trajectory tracking of fully-actuated Unmanned Surface Vessels (USV),a dual-layer control method combining Model Predictive Control(MPC) with Integral Sliding Mode Control(ISMC) is proposed.Firstly,as for the kinematics model of the USV system,a model predictive controller is designed to obtain the desired velocity signal satisfying the constraints according to the desired trajectory.As for the dynamics model,an integral sliding mode controller is designed to track the desired signal in the presence of external disturbances,which improves the robustness of the system.A nonlinear disturbance observer is designed to estimate the external disturbance and compensate for the external disturbance during the design of the control law.Finally,the stability of the system is proved by the Lyapunov method.Numerical simulation proves that the combination of the two can effectively achieve the trajectory tracking of the fully-actuated USV.
参考文献

[1] VALENCIAGA F.A second order sliding mode path following control for autonomous surface vessels[J].Asian Journal of Control,2014,16(5):1515-1521.

[2] 廖煜雷,庄佳园,李晔,等.欠驱动无人艇轨迹跟踪的滑模控制方法[J].应用科学学报,2011,29(4):428-434.

[3] OH S R,SUN J.Path following of underactuated marine surface vessels using line-of-sight based model predictive control[J].Ocean Engineering,2010,37(2-3):289-295.

[4] LIU Z L,CHAO G,ZHANG J.Model predictive controller design with disturbance observer for path following of unmanned surface vessel[C]//IEEE International Conference on Mechatronics and Automation (ICMA).Takamatsu:IEEE,2017.doi:10.1109/ICMA.2017.8016095.

[5] TIAN Z,YUAN J Q,ZHANG X,et al.Modeling and sliding mode predictive control of the ultra-supercritical boiler-turbine system with uncertainties and input constraints[J].ISA Transactions,2018,76:43-56.

[6] YIN L H,TURESSON G,TUNESTL P,et al.Sliding mode control on receding horizon:practical control design and application[J].Control Engineering Practice,2021,109:104724.

[7] MUSA A,SABUG L R,MONTI A.Robust predictive sliding mode control for multiterminal HVDC grids[J].IEEE Transactions on Power Delivery,2018,33(4):1545-1555.

[8] GARCIA-GABIN W,ZAMBRANO D,CAMACHO E F.Sliding mode predictive control of a solar air conditioning plant[J].Control Engineering Practice,2009,17(6):652-663.

[9] KANG S Z,WU H T,YANG X L,et al.Discrete-time predictive sliding mode control for a constrained parallel micropositioning piezostage[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,52(5):3025-3036.

[10] FARONI M,BESCHI M,PEDROCCHI N.An MPC framework for online motion planning in human-robot collaborative tasks[C]//The 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA).Zaragoza:IEEE,2019.doi:10.1109/ETFA.2019.8869047.

[11] CHEN S P,CHEN H Y.MPC-based path tracking with PID speed control for autonomous vehicles[C]//IOP Conference Series:Materials Science and Engineering,The Third International Workshop on Materials Science and Mechanical Engineering (IWMSME).Hangzhou:IWMSME,2020.doi:10.1088/1757-899X/892/1/012034.

[12] CHEN S P,XIONG G M,CHEN H Y,et al.MPC-based path tracking with PID speed control for high-speed autonomous vehicles considering time-optimal travel[J].Journal of Central South University,2020,27(12):3702-3720.

[13] HEDMAN M,MERCORELLI P.FFTSMC with optimal reference trajectory generated by MPC in robust robotino motion planning with saturating inputs[C]//American Control Conference (ACC).New Orleans,LA:IEEE,2021.doi:10.23919/ACC50511.2021.9482876.

[14] BAYAT F.Model predictive sliding control for finite-time three-axis spacecraft attitude tracking[J].IEEE Transactions on Industrial Electronics,2019,66(10):7986-7996.

[15] HUANG Y J,WANG H,KHAJEPOUR A,et al.A novel local motion planning framework for autonomous vehicles based on resistance network and model predictive control[J].IEEE Transactions on Vehicular Technology,2019,69(1):55-66.

[16] YUE M,AN C,DING L,et al.A MPC motion planning-based sliding mode control for underactuated WPS vehicle via Olfati transformation[J].IET Control Theory & Applications,2018,12(4):495-503.

[17] 武建国,陈凯,陈武进,等.基于非线性干扰观测器的AUV量化反馈滑模控制[J].水下无人系统学报,2021,29(5):556-564.(上接第35页)

[18] 蒲明,吴庆宪,姜长生,等.新型快速Terminal滑模及其在近空间飞行器上的应用[J].航空学报,2011,32(7):1283-1291.

[19] 姜长生.关于近空间飞行器飞行控制系统研究设计的几个问题[J].电光与控制,2015,22(7):1-13.

[20] WANG F,LAI G Y.Fixed-time control design for nonlinear uncertain systems via adaptive method[J].Systems & Control Letters,2020,140:104704.

[21] CHEN C,LI L X,PENG H P,et al.A new fixed-time stability theorem and its application to the fixed-time synchronization of neural networks[J].Neural Networks,2020,123:412-419.

[22] DING Y B,WANG X G,BAI Y L,et al.Robust fixed-time sliding mode controller for flexible air-breathing hypersonic vehicle[J].ISA Transactions,2019,90:1-18.

[23] CHAKRABORTY A,SEILER P,BALAS G J.Susceptibility of F/A-18 flight controllers to the falling-leaf mode:linear analysis[J].Journal of Guidance,Control,and Dynamics,2011,34(1).doi:10.2514/1.50674.

[24] GAO G,WANG J Z,WANG X H.Adaptive fault-tolerant control for feedback linearizable systems with an aircraft application[J].Robust and Nonlinear Control,2015,25(9):1301-1326.

[25] ZHEN Z Y,JIANG J,WANG X H,et al.Modeling,control design,and influence analysis of catapult-assisted take-off process for carrier-based aircrafts[J].Journal of Aerospace Engineering,2018,232(13):2527-2540.

[26] MOORHOUSE D J,WOODCOCK T J.Background information and user guide for MIL-F-8785C[R].Washington:Air Force Wright Aeronautical,1982.

[27] WANG H H,CHEN B,LIN C,et al.Adaptive finite-time control for a class of uncertain high-order non-linear systems based on fuzzy approximation[J].IET Control Theory & Applications,2017,11(5):677-684.

[28] SMAEILZADEH S M,GOLESTANI M.Finite-time fault-tolerant adaptive robust control for a class of uncertain non-linear systems with saturation constraints using integral backstepping approach[J].IET Control Theory & Applications,2018,12(15):2109-2117.

[29] 蒲明,吴庆宪,姜长生,等.快速高阶滑模微分器[J].控制与决策,2012,27(9):1415-1420.

[30] ANGULO M T,MORENO J A,FRIDMAN L.Robust exact uniformly convergent arbitrary order differentiator[J].Automatica,2013,49(8):2489-2495.

[31] 刘继承,江驹,阴浩博,等.高超声速飞行器自适应固定时间抗饱和控制[J].哈尔滨工程大学学报,2022,43(7):1013-1022.

[32] ZHEN Z Y,JIANG S Y,JIANG J.Preview control and particle filtering for automatic carrier landing[J].IEEE Transactions on Aerospace and Electronic Systems,2018,54(6):2662-2674.

冯鑫, 于双和. 基于滑模预测控制的水面无人船轨迹跟踪研究[J]. 电光与控制, 2023, 30(9): 0085. FENG Xin, YU Shuanghe. Trajectory Tracking of Unmanned Surface Vessels Based on Sliding Mode Predictive Control[J]. Electronics Optics & Control, 2023, 30(9): 0085.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!