光学 精密工程, 2020, 28 (2): 415, 网络出版: 2020-05-27   

双测头复合型微纳米测量仪的研制

Development of double probe composite micro-and nano measuring instrument
作者单位
1 上海市计量测试技术研究院 机械与制造计量技术研究所, 上海 201203
2 哈尔滨工业大学 仪器科学与工程学院, 黑龙江 哈尔滨 150001
摘要
针对当前微纳米测量中存在的大范围高精度测量及复杂微结构几何参数表征难题, 基于多测头传感和精密定位平台复用技术, 开发了一台具有多种测量尺度和测量模式的复合型微纳米测量仪。为使其具备大范围快速扫描测量和小范围精细测量功能, 仪器集成了白光干涉和原子力显微镜两种测头, 通过设计适用于两种测头集成的桥架结构及宏/微两级驱动定位平台, 实现整机的开发。为保证仪器测量结果的准确性和溯源性, 利用标准样板对开发完成的仪器进行了校准。仪器搭载的白光干涉测头可以达到横向500 nm, 纵向1 nm的分辨力; 原子力显微镜测头横向和纵向分辨力均可达到1 nm。最后, 利用目标仪器对微球样品进行了测量, 通过大范围成像和小范围精细扫描, 获得了微球的表面特征, 验证了仪器对复杂微结构的测量能力。
Abstract
To solve the problems of large-scale and high-precision measurement as well as geometrical parameter characterization of complex microstructures, a composite micro-and nano-measuring instrument was developed based on multi-probe sensing and precise positioning platform multiplexing technology. To realize high-speed scans of a large area and fine measurement of a small area, a White Light Interference(WLI) microscope and an Atomic Force Microscope (AFM) were integrated into the bridge structure of the instrument.A macro/micro-driving platform was designed and tested to meet the positioning range and accuracy requirements. The instrument could work on in a contact or noncontact mode.Furthermore, different geometrical parameters could be characterized by the instrument. The instrument was calibrated using a nano dimensional standard to ensure accuracy and traceability. The WLI resolution of the instrument can reach 500 nm in the lateral direction and 1 nm in the vertical direction. The AFM resolution is better than 1 nm in both the lateral and vertical directions. Lastly, a micro ball was measured and its surface geometrical characteristics were obtained by large-range imaging and small-range fine scanning. Thus, the instrumental capability was verified.
参考文献

[1] DAI G L, XU M, BRAND U, et al.. Measurements of the diameter, roundness and sidewall profile of micro- and nanoholes[J]. Sensors and Measuring Systems, 19th ITG/GMA-Symposium. VDE, 2018: 1-7.

[2] 何宝凤, 丁思源, 魏翠娥, 等. 三维表面粗糙度测量方法综述[J]. 光学 精密工程, 2019, 1(27): 78-93.

    HE B F, DING S Y, WEI C E, et al.. Review of measurement methods for areal surface roughness[J]. Opt. Precision Eng., 2019, 1(27): 78-93. (in Chinese)

[3] 王富生, 谭久彬. 表面微观轮廓的高分辨率光学测量方法[J]. 光学 精密工程, 2000, 8(4): 309-315.

    WANG F S, TANG J B. High resolution optical measurement of surface microcontours [J]. Opt. Precision Eng., 2000, 8(4): 309-315. (in Chinese)

[4] LI R J, XU P, WANG P Y, et al.. Development of a micro/nano probing system using double elastic mechanisms [J]. Sensors, 2018, 18(12): 4229.

[5] YANG W J, LIU X J, LU W L, et al.. Influence of probe dynamic characteristics on the scanning speed for white light interference based AFM [J]. Precision Engineering, 2018, 51: 348-352.

[6] PHAN N N, LE H H, DUONG D C, et al.. Measurement of nanoscale displacements using a Mirau white-light interference microscope and an inclined flat surface[J]. Optical Engineering, 2019, 58(6): 064106.

[7] GROOT P J. A review of selected topics in interferometric optical metrology[J]. Reports on Progress in Physics, 2019, 82(5): 056101.

[8] JEONG H, YOO H, GWEON D G. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens[J]. Optics express, 2016, 24(4): 3806-3816.

[9] MANSKE E, JAGER G, HAUSOTTE T, et al.. Recent developments and challenges of nanopositioning and nanomeasuring technology[J]. Measurement Science and Technology, 2012, 23(7): 074001.

[10] 黄强先, 张蕤, 刘凯, 等. 多模态动态原子力显微镜系统[J]. 光学 精密工程, 2017, 25(2): 401-407.

    HUANG Q X, ZHANG R, LIU K, et al.. Multi-mode dynamic atomic force microscope system[J]. Opt. Precision Eng., 2017, 25(2): 401-407. (in Chinese)

[11] JAGER G, HAUSOTTE T, MANSKE E, et al.. Nanomeasuring and nanopositioning engineering[J]. Measurement, 2010, 43(9): 1099-1105.

[12] CLAVERLEY J, LEACH R. A review of the existing performance verification infrastructure for micro-CMMs[J]. Precision Engineering, 2015, 39: 1-15.

[13] GOJ B, DRESSLER L, HOFFMANN M. Resonant probing system comprising a high accurate uniaxial nanoprobe and a new evaluation unit[J]. Journal of Micromechanics and Microengineering, 2013, 23(9): 1-9.

[14] 卫兵, 胡鹏浩, 王继臣, 等. 新型纳米三坐标测量机主体结构设计[J]. 农业机械学报, 2007, 38(1): 158-160.

    WEI B, HU P H, WANG J C, et al.. Design of new nano-CMM structure[J]. Transactions of The Chinese Society of Agricultural Machinery, 2007, 38(1): 158-160. (in Chinese)

[15] 马龙. 白光扫描干涉测量方法与系统的研究[D]. 天津: 天津大学, 2011.

    MA L. Study on White Light Scanning Interferometry: Measurement Method and System[D]. Tianjin: Tianjin University, 2011. (in Chinese)

[16] 简黎. 微纳特征结构及表面形貌表征方法的研究[D]. 杭州: 中国计量学院, 2016.

    JIAN L. Research on Characterization Methods of Micro/Nano Structures and Surface Roughness[D]. Hangzhou: China Jiliang University, 2016. (in Chinese)

吴俊杰, 刘俭, 魏佳斯, 傅云霞, 李源. 双测头复合型微纳米测量仪的研制[J]. 光学 精密工程, 2020, 28(2): 415. WU Jun-jie, LIU Jian, WEI Jia-si, FU Yun-xia, LI Yuan. Development of double probe composite micro-and nano measuring instrument[J]. Optics and Precision Engineering, 2020, 28(2): 415.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!