光学学报, 2022, 42 (17): 1701003, 网络出版: 2022-09-16   

水下鬼成像的研究进展 下载: 1885次特邀综述

Research Progress on Underwater Ghost Imaging
作者单位
四川大学电子信息学院激光微纳工程研究所,四川 成都 610065
引用该论文

杨莫愁, 吴仪, 冯国英. 水下鬼成像的研究进展[J]. 光学学报, 2022, 42(17): 1701003.

Mochou Yang, Yi Wu, Guoying Feng. Research Progress on Underwater Ghost Imaging[J]. Acta Optica Sinica, 2022, 42(17): 1701003.

参考文献

[1] Brown R H, Twiss R Q. Correlation between photons in two coherent beams of light[J]. Nature, 1956, 177(4497): 27-29.

[2] Brown R H, Twiss R Q. A test of a new type of stellar interferometer on Sirius[J]. Nature, 1956, 178(4541): 1046-1048.

[3] Pittman T B, Shih Y H, Strekalov D V, et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 1995, 52(5): R3429-R3432.

[4] Bennink R S, Bentley S J, Boyd R W. Two-Photon coincidence imaging with a classical source[J]. Physical Review Letters, 2002, 89(11): 113601.

[5] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 2008, 78(6): 061802.

[6] Katz O, Bromberg Y, Silberberg Y. Compressive ghost imaging[J]. Applied Physics Letters, 2009, 95(13): 131110.

[7] Lü M, Wang W, Wang H, et al. Deep-learning-based ghost imaging[J]. Scientific Reports, 2017, 7: 17865.

[8] 吕沛, 周仁魁, 何俊华, 等. 水下单像素成像系统研究[J]. 光电子·激光, 2011, 22(9): 1425-1430.

    Lü P, Zhou R K, He J H, et al. Research on underwater single-pixel imaging system[J]. Journal of Optoelectronics·Laser, 2011, 22(9): 1425-1430.

[9] Le M N, Wang G, Zheng H B, et al. Underwater computational ghost imaging[J]. Optics Express, 2017, 25(19): 22859-22868.

[10] Gao Y, Fu X Q, Bai Y F. Ghost imaging in transparent liquid[J]. Journal of Optics, 2017, 46(4): 410-414.

[11] Yin M Q, Wang L, Zhao S M. Experimental demonstration of influence of underwater turbulence on ghost imaging[J]. Chinese Physics B, 2019, 28(9): 190-195.

[12] 李宜泽, 邓陈进, 龚文林, 等. 浑浊介质下的偏振差分关联成像研究[J]. 光学学报, 2021, 41(15): 1511004.

    Li Y Z, Deng C J, Gong W L, et al. Polarization difference ghost imaging in turbid medium[J]. Acta Optica Sinica, 2021, 41(15): 1511004.

[13] Zhang M H, Wei Q, Shen X, et al. Lensless Fourier-transform ghost imaging with classical incoherent light[J]. Physical Review A, 2007, 75(2): 441-445.

[14] Chan K W C, O'Sullivan M N, Boyd R W. Optimization of thermal ghost imaging: high-order correlations vs. background subtraction[J]. Optics Express, 2010, 18(6): 5562-5573.

[15] Chen L Y, Wang C, Xiao X Y, et al. Denoising in SVD-based ghost imaging[J]. Optics Express, 2022, 30(4): 6248-6257.

[16] Vallés A, He J H, Ohno S, et al. Broadband high-resolution terahertz single-pixel imaging[J]. Optics Express, 2020, 28(20): 28868-28881.

[17] Ma Y, Grant J, Saha S, et al. Terahertz single pixel imaging based on a Nipkow disk[J]. Optics Letters, 2012, 37(9): 1484-1486.

[18] Kingston A M, Myers G R, Pelliccia D, et al. Neutron ghost imaging[J]. Physical Review A, 2020, 101(5): 053844.

[19] Schori A, Shwartz S. X-ray ghost imaging with a laboratory source[J]. Optics Express, 2017, 25(13): 14822-14828.

[20] Studer V, Bobin J, Chahid M, et al. Compressive fluorescence microscopy for biological and hyperspectral imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): E1679-E1687.

[21] Yu W K, Li M F, Yao X R, et al. Adaptive compressive ghost imaging based on wavelet trees and sparse representation[J]. Optics Express, 2014, 22(6): 7133-7144.

[22] Sun M J, Edgar M P, Gibson G M, et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 2016, 7: 12010.

[23] Wang L, Zhao S M. Full color single pixel imaging by using multiple input single output technology[J]. Optics Express, 2021, 29(15): 24486-24499.

[24] Liu J F, Wang L, Zhao S M. Spread spectrum ghost imaging[J]. Optics Express, 2021, 29(25): 41485-41495.

[25] Liu B L, Wang F, Chen C H, et al. Self-evolving ghost imaging[J]. Optica, 2021, 8(10): 1340-1349.

[26] Edgar M P, Gibson G M, Padgett M J. Principles and prospects for single-pixel imaging[J]. Nature Photonics, 2019, 13(1): 13-20.

[27] Bromberg Y, Katz O, Silberberg Y. Ghost imaging with a single detector[J]. Physical Review A, 2009, 79(5): 053840.

[28] ShapiroJ H, ErkmenB I. Ghost imaging: from quantum to classical to computational[C]. AIP Conference Proceedings, 2009, 1110(1): 417-422.

[29] Zhang H, Duan D Y. Turbulence-immune computational ghost imaging based on a multi-scale generative adversarial network[J]. Optics Express, 2021, 29(26): 43929-43937.

[30] Shi W X, Hu C Y, Yang S G, et al. Optical random speckle encoding based on hybrid wavelength and phase modulation[J]. Optics Letters, 2021, 46(15): 3745-3748.

[31] Olivieri L, Gongora J S T, Peters L, et al. Hyperspectral terahertz microscopy via nonlinear ghost imaging[J]. Optica, 2020, 7(2): 186-191.

[32] Xu Z H, Chen W, Penuelas J, et al. 1000 fps computational ghost imaging using LED-based structured illumination[J]. Optics Express, 2018, 26(3): 2427-2434.

[33] Yu H, Lu R H, Han S S, et al. Fourier-transform ghost imaging with hard X rays[J]. Physical Review Letters, 2016, 117(11): 113901.

[34] Ferri F, Magatti D, Lugiato L A, et al. Differential ghost imaging[J]. Physical Review Letters, 2010, 104(25): 253603.

[35] Sun B Q, Welsh S S, Edgar M P, et al. Normalized ghost imaging[J]. Optics Express, 2012, 20(15): 16892-16901.

[36] 李畅, 高超, 邵嘉琪, 等. 基于压缩感知重构算法的哈达玛鬼成像[J]. 激光与光电子学进展, 2021, 58(10): 1011032.

    Li C, Gao C, Shao J Q, et al. Hadamard ghost imaging based on compressed sensing reconstruction algorithm[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011032.

[37] Yang D Y, Chang C, Wu G H, et al. Compressive ghost imaging of the moving object using the low-order moments[J]. Applied Sciences, 2020, 10(21): 7941.

[38] Wang L, Zhao S M. Compressed ghost imaging based on differential speckle patterns[J]. Chinese Physics B, 2020, 29(2): 341-347.

[39] Zhang W W, Yu D Q, Han Y C, et al. Depth estimation of multi-depth objects based on computational ghost imaging system[J]. Optics and Lasers in Engineering, 2022, 148: 106769.

[40] Bian Z X, Zhang L H, Ye H L, et al. Multiple-image encryption based on Toeplitz matrix ghost imaging and elliptic curve cryptography[J]. Laser Physics Letters, 2021, 18(5): 055206.

[41] Zheng P X, Tan Q L, Liu H C. Inverse computational ghost imaging for image encryption[J]. Optics Express, 2021, 29(14): 21290-21299.

[42] Zhao M, Zhang X D, Zhang R F. Single-arm ghost imaging via conditional generative adversarial network[J]. Laser Physics Letters, 2021, 18(7): 075203.

[43] Yu Z, Liu Y, Li J X, et al. Color computational ghost imaging by deep learning based on simulation data training[J]. Applied Optics, 2022, 61(4): 1022-1029.

[44] Wang F, Wang C L, Chen M L, et al. Far-field super-resolution ghost imaging with a deep neural network constraint[J]. Light: Science & Applications, 2022, 11: 1-11.

[45] Zhang Z J, Wang C F, Gong W L, et al. Ghost imaging of the blurred object based on the deep-learning[J]. Applied Optics, 2021, 60(13): 3732-3739.

[46] 赵延庚, 董冰, 刘明, 等. 可抑制大气湍流影响的深度学习计算鬼成像[J]. 光学学报, 2021, 41(11): 1111001.

    Zhao Y G, Dong B, Liu M, et al. Deep learning based computational ghost imaging alleviating the effects of atmospheric turbulence[J]. Acta Optica Sinica, 2021, 41(11): 1111001.

[47] Wu H, Wang R Z, Zhao G P, et al. Deep-learning denoising computational ghost imaging[J]. Optics and Lasers in Engineering, 2020, 134: 106183.

[48] Wu H, Wang R Z, Zhao G P, et al. Sub-Nyquist computational ghost imaging with deep learning[J]. Optics Express, 2020, 28(3): 3846-3853.

[49] Bian T, Yi Y X, Hu J L, et al. A residual-based deep learning approach for ghost imaging[J]. Scientific Reports, 2020, 10: 12149.

[50] Wang F, Wang H, Wang H C, et al. Learning from simulation: an end-to-end deep-learning approach for computational ghost imaging[J]. Optics Express, 2019, 27(18): 25560-25572.

[51] Bina M, Magatti D, Molteni M, et al. Backscattering differential ghost imaging in turbid media[J]. Physical Review Letters, 2013, 110(8): 083901.

[52] 项青, 杨克成, 于龙, 等. 反射式水下量子成像[J]. 光学学报, 2015, 35(7): 0711002.

    Xiang Q, Yang K C, Yu L, et al. Reflective underwater ghost imaging[J]. Acta Optica Sinica, 2015, 35(7): 0711002.

[53] Wang M Q, Bai Y F, Zou X P F, et al. Effect of uneven temperature distribution on underwater computational ghost imaging[J]. Laser Physics, 2022, 32(6): 065205.

[54] Hardy N D, Shapiro J H. Reflective ghost imaging through turbulence[J]. Physical Review A, 2011, 84(6): 063824.

[55] Luo C L, Li Z L, Xu J H, et al. Computational ghost imaging and ghost diffraction in turbulent ocean[J]. Laser Physics Letters, 2018, 15(12): 125205.

[56] Korotkova O, Farwell N. Effect of oceanic turbulence on polarization of stochastic beams[J]. Optics Communications, 2011, 284(7): 1740-1746.

[57] Luo C L, Wan W X, Chen S Y, et al. High-quality underwater computational ghost imaging with shaped Lorentz sources[J]. Laser Physics Letters, 2020, 17(10): 105209.

[58] Zhang Q W, Li W D, Liu K, et al. Effect of oceanic turbulence on the visibility of underwater ghost imaging[J]. Journal of the Optical Society of America A, 2019, 36(3): 397-402.

[59] Zhang Y, Li W D, Wu H Z, et al. High-visibility underwater ghost imaging in low illumination[J]. Optics Communications, 2019, 441: 45-48.

[60] 张钦伟, 曹连振, 刘霞, 等. 反射式鬼成像在海洋湍流中的成像分析[J]. 光子学报, 2020, 49(9): 0901002.

    Zhang Q W, Cao L Z, Liu X, et al. Imaging analysis of reflective ghost imaging in oceanic turbulence[J]. Acta Photonica Sinica, 2020, 49(9): 0901002.

[61] Chen Q, Mathai A, Xu X P, et al. A study into the effects of factors influencing an underwater, single-pixel imaging system′s performance[J]. Photonics, 2019, 6(4): 123.

[62] Yang X, Liu Y, Mou X Y, et al. Imaging in turbid water based on a Hadamard single-pixel imaging system[J]. Optics Express, 2021, 29(8): 12010-12023.

[63] Chen Q, Mathai A, Xu X P, et al. A study into the effects of factors influencing an underwater, single-pixel imaging system's performance[J]. Photonics, 2019, 6(4): 123.

[64] 赵明, 王钰, 田芷铭, 等. 水下推扫式计算鬼成像的方法[J]. 激光与光电子学进展, 2019, 56(16): 161101.

    Zhao M, Wang Y, Tian Z M, et al. Method of push-broom underwater ghost imaging computation[J]. Laser & Optoelectronics Progress, 2019, 56(16): 161101.

[65] 赵美晶. 水下偏振鬼成像方法研究[D]. 大连: 大连海事大学, 2019: 42-43.

    ZhaoM J. Research on underwater polarization-based ghost imaging[D]. Dalian: Dalian Maritime University, 2019: 42-43.

[66] Wu H D, Zhao M, Li F Q, et al. Underwater polarization-based single pixel imaging[J]. Journal of the Society for Information Display, 2020, 28(2): 157-163.

[67] 杨旭, 蒋鹏飞, 吴龙, 等. 基于水体退化函数补偿方法的水下傅里叶单像素成像[J]. 红外与激光工程, 2020, 49(11): 20200281.

    Yang X, Jiang P F, Wu L, et al. Underwater Fourier single pixel imaging based on water degradation function compensation method[J]. Infrared and Laser Engineering, 2020, 49(11): 20200281.

[68] Wang T, Chen M Y, Wu H, et al. Underwater compressive computational ghost imaging with wavelet enhancement[J]. Applied Optics, 2021, 60(23): 6950-6957.

[69] Li M D, Mathai A, Lau S L H, et al. Underwater object detection and reconstruction based on active single-pixel imaging and super-resolution convolutional neural network[J]. Sensors, 2021, 21(1): 313.

[70] Yang X, Yu Z Y, Xu L, et al. Underwater ghost imaging based on generative adversarial networks with high imaging quality[J]. Optics Express, 2021, 29(18): 28388-28405.

[71] HondoriE J, KatoM, AsakawaE, et al. Receiver ghost imaging using vertical cable seismic data for methane hydrate exploration[C]//SEG Technical Program Expanded Abstracts 2019, September 18, 2019, San Antonio, Texas. Houstin: Society of Exploration Geophysicists, 2019: 4322-4326.

[72] 吴泳波, 杨志慧, 唐志列. 水下鬼成像抗扰动能力的实验研究[J]. 激光与光电子学进展, 2021, 58(10): 1011031.

    Wu Y B, Yang Z H, Tang Z L. Experimental study on anti-disturbance ability of underwater ghost imaging[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011031.

[73] Lanzagorta M. Quantum imaging for underwater arctic navigation[J]. Proceedings of SPIE, 2017, 10188: 101880G.

[74] LanzagortaM. Quantum imaging for underwater arctic navigation: US20160018525[P]. 2016-01-21.

[75] LanzagortaM, UhlmannJ. Quantum imaging in the maritime environment[C]//OCEANS 2017-Anchorage, September 18-21, 2017, Anchorage, AK, USA. New York: IEEE Press, 2017.

杨莫愁, 吴仪, 冯国英. 水下鬼成像的研究进展[J]. 光学学报, 2022, 42(17): 1701003. Mochou Yang, Yi Wu, Guoying Feng. Research Progress on Underwater Ghost Imaging[J]. Acta Optica Sinica, 2022, 42(17): 1701003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!