光学学报, 2022, 42 (17): 1701003, 网络出版: 2022-09-16   

水下鬼成像的研究进展 下载: 1887次特邀综述

Research Progress on Underwater Ghost Imaging
作者单位
四川大学电子信息学院激光微纳工程研究所,四川 成都 610065
图 & 表

图 1. 鬼成像中常见的调制器件

Fig. 1. Common modulators in ghost imaging

下载图片 查看原文

图 2. 基于投影仪的鬼成像结构示意图。待测物体为透射型且调制器为透射型时的(a)鬼成像和(b)单像素成像;待测物体为透射型且调制器为反射型时的(c)鬼成像和(d)单像素成像;待测物体为反射型且调制器为透射型时的(e)鬼成像和(f)单像素成像;待测物体为反射型且调制器为反射型时的(g)鬼成像和(h)单像素成像

Fig. 2. Structural diagram of ghost imaging based on projector. (a) Ghost imaging and (b) single-pixel imaging when object to be measured is transmissive and modulator is transmissive; (c) ghost imaging and (d) single-pixel imaging when object to be measured is transmissive and modulator is reflective; (e) ghost imaging and (f) single-pixel imaging when object to be measured is reflective and modulator is transmissive; (g) ghost imaging and (h) single-pixel imaging when object to be measured is reflective and modulator is reflective

下载图片 查看原文

图 3. 基于投影仪的鬼成像结构示意图

Fig. 3. Structural diagram of ghost imaging based on projector

下载图片 查看原文

图 4. 鬼成像的关键技术

Fig. 4. Key technology of ghost imaging

下载图片 查看原文

图 5. 水下鬼成像的装置图和模拟结果。(a)水下鬼成像的装置图;(b)盐水和牛奶水环境下的鬼成像、差分鬼成像、压缩感知鬼成像和卷积神经网络鬼成像(CNNGI)

Fig. 5. Experimental setup and simulation results of underwater ghost imaging. (a) Experimental setup of underwater ghost imaging; (b) ghost imaging, differential ghost imaging, compressed sensing ghost imaging and convolutional neural network ghost imaging (CNNGI) in water environment added salt and milk

下载图片 查看原文

图 6. 后向散射光作用下的水下鬼成像结果52。(a)仿真结果;(b)结果实验

Fig. 6. Underwater ghost imaging results under backscatter light[52]. (a) Simulation result; (b) experiment result

下载图片 查看原文

图 7. 水下散斑-物距离、水质浑浊度和视角对水下鬼成像的影响9。(a)水下成像装置图;(b)视角测量装置图;(c)电荷耦合器件(CCD)捕获的不同浑浊度图;(d)不同帧数、浑浊度和位置下的鬼成像图;(e)信噪比与浑浊度的关系;(f)光功率、信噪比与视角的关系

Fig. 7. Effects of underwater speckle-object distance, water turbidity and angle of view on underwater ghost imaging[9]. (a) Experimental setup of underwater imaging; (b) experimental setup for measurement of angle of view; (c) images with different turbidities captured by charge-coupled device (CCD); (d) ghost imaging results at different frame numbers, turbidities, and positions; (e) relationship between signal-to-noise ratio and turbidity;(f) relationship among optical power, signal-to-noise ratio and angle of view

下载图片 查看原文

图 8. 水下散斑-物距离和折射率对水下鬼成像的影响10。(a)不同行进距离下鬼成像结果图;(b)不同行进距离下点扩散函数宽度随总光程的变化;(c)不同折射率下鬼成像结果图;(d)不同折射率下点扩散函数宽度随总光程的变化

Fig. 8. Effects of speckle-object distance and refractive index on underwater ghost imaging[10]. (a) Ghost imaging results at different distances; (b) width of point spread function varying with total optical path under different distances; (c) ghost imaging results under different refractive indices; (d) width of point spread function varying with total optical path under different refractive indices

下载图片 查看原文

图 9. 水下散斑-物距离和水温对水下鬼成像的影响53。(a)光路示意图;(b)不同位置和温度时成像结果;(c)不同位置处鬼成像信噪比与温度的关系;(d)鬼成像信噪比与散斑-物距离的关系

Fig. 9. Effects of underwater speckle-object distance and water temperature on underwater ghost imaging[53]. (a) Light path diagram; (b) imaging results under different locations and temperatures; (c) relationship between signal-to-noise ratio of ghost imaging and temperature at different locations; (d) relationship between signal-to-noise ratio of ghost imaging and speckle-object distance

下载图片 查看原文

图 10. 温度梯度、振动幅度对水下鬼成像的影响11。(a)水下环境示意图;(b)不同位置和温度梯度下的成像结果;(c)不同位置下结构相似性(SSIM)与温度梯度的关系;(d)不同振动幅度下的成像结果和结构相似度;(e)结构相似度与浑浊度关系

Fig. 10. Effects of temperature gradient and vibration amplitude on underwater ghost imaging[11]. (a) Schematic diagram of underwater environment; (b) imaging results under different locations and temperature gradients; (c) relationship between structural similarity (SSIM) and temperature gradient at different locations; (d) imaging results and structural similarities under different vibration amplitudes; (e) relationship between structural similarity and turbidity

下载图片 查看原文

图 11. 传播距离、海洋湍流系数和光束形貌对水下鬼成像的影响5557。(a)不同传播距离下的成像结果;(b)均方根误差与εχTω间的关系;(c)高斯光源和洛伦兹光源的鬼成像结果;(d)高斯光源和不同调制因子的洛伦兹光源下均方根误差与海洋湍流参数关系

Fig. 11. Effects of propagation distance, ocean turbulence coefficients and beam morphology on underwater ghost imaging[55, 57]. (a) Imaging results under different propagation distances; (b) root mean square error varying with ε,χT and ω; (c) ghost imaging results of Gaussian light source and Lorentz light source; (d) relationship between root mean square error and ocean turbulence parameters under Gaussian light source and Lorentz light source with different modulation factors

下载图片 查看原文

图 12. 海洋湍流系数和浑浊度对水下鬼成像的影响58-59。(a)能见度与χT的关系;(b)能见度与ε的关系;(c)能见度与ω的关系;(d)能见度与波长的关系;(e)能见度与相干长度的关系;(f)不同浑浊度的传统成像与鬼成像;(g)峰值信噪比与相对衰减系数的关系;(h)可见度与相对衰减系数的关系

Fig. 12. Effects of ocean turbulence coefficient and turbidity on underwater ghost imaging[58-59]. (a) Relationship between visibility and χT; (b) relationship between visibility and ε; (c) relationship between visibility and ω; (d) relationship between visibility and wavelength; (e) relationship between visibility and coherence length; (f) traditional imaging and ghost imaging under different turbidities; (g) relationship between peak signal-to-noise ratio and relative attenuation coefficient; (h) relationship between visibility and relative attenuation coefficient

下载图片 查看原文

图 13. 入射角度、传播距离和海洋湍流系数对水下鬼成像的影响60。(a)水下光路图;(b)不同入射角度的成像结果;(c)不同传输距离的成像结果。(d)可见度与χT间的关系;(e)可见度与ε间的关系;(f)可见度与ω间的关系

Fig. 13. Effects of incident angle, propagation distance and ocean turbulence coefficients on underwater ghost imaging[60]. (a) Light path diagram of underwater; (b) imaging results of different incident angles; (c) imaging results of different transmission distances; (d) relationship between visibility and χT; (e) relationship between visibility and ε; (f) relationship between visibility and ω

下载图片 查看原文

图 14. 散斑阿达玛模式的水下鬼成像61。(a)随机散斑与阿达玛散斑下的成像结果;(b)不同浑浊度下阿达玛散斑鬼成像与传统成像对比

Fig. 14. Hadamard speckle underwater ghost imaging[61]. (a) Imaging results under random speckles and Hadamard speckles; (b) comparison between Hadamard speckle ghost imaging and traditional imaging under different turbidities

下载图片 查看原文

图 15. 激光功率、投影率和浑浊度对阿达玛水下鬼成像的影响62。(a)不同激光功率下的阿达玛水下鬼成像;(b)不同投影频率下的阿达玛水下鬼成像;(c)不同浑浊度下的阿达玛水下鬼成像;(d)阿达玛水下鬼成像、相机、压缩感知鬼成像和傅里叶鬼成像结果的对比

Fig. 15. Effects of laser power, projection rate and turbidity on Hadamard underwater ghost imaging[62]. (a) Hadamard underwater ghost imaging under different laser powers; (b) Hadamard underwater ghost imaging under different projection frequencies; (c) Hadamard underwater ghost imaging under different turbidities; (d) comparison of Hadamard underwater ghost imaging, camera, compressed sensing ghost imaging and Fourier ghost imaging results

下载图片 查看原文

图 16. 脉冲峰值检测型水下鬼成像63。(a)不同传输距离下的鬼成像;(b)不同入射角下的鬼成像;(c)不同介质衰减系数下的鬼成像

Fig. 16. Pulse peak detection underwater ghost imaging[63]. (a) Ghost imaging at different transmission distances; (b) ghost imaging at different incident angles; (c) ghost imaging at different medium attenuation coefficients

下载图片 查看原文

图 17. 推扫式计算水下鬼成像和交叉偏振型水下鬼成像64-66。(a)推扫式计算水下鬼成像的结构示意图;(b)不同浑浊度和传输距离下的成像对比;(c)交叉偏振型水下鬼成像的结构示意图;(d)不同偏振和浑浊度下的成像对比

Fig. 17. Push-sweep computing underwater ghost imaging and cross-polarization underwater ghost imaging[64-66]. (a) Structural diagram of push-sweep computing underwater ghost imaging; (b) imaging comparison under different turbidities and transmission distances; (c) structural diagram of cross-polarization underwater ghost imaging; (d) imaging comparison under different polarizations and turbidities

下载图片 查看原文

图 18. 基于直方图预处理的水下偏振差分鬼成像12。(a)直方图偏振差分鬼成像光路示意图;(b)不同浑浊度和偏振下的鬼成像结果;(c)不同浓度下的重建图像灰度的直方图统计结果

Fig. 18. Underwater polarization differential ghost imaging based on histogram preprocessing[12]. (a) Schematic diagram of light path of histogram polarization differential ghost imaging; (b) ghost imaging results under different turbidities and polarizations; (c) histogram statistical results of gray values of reconstructed images under different concentrations

下载图片 查看原文

图 19. 凸集交替投影的水下鬼成像8

Fig. 19. Underwater ghost imaging for convex set alternating projection[8]

下载图片 查看原文

图 20. 水降解函数补偿的水下鬼成像67。(a)水降解函数补偿鬼成像、差分鬼成像和傅里叶鬼成像的对比;(b)不同采样率下水降解函数补偿鬼成像和傅里叶鬼成像的结果

Fig. 20. Underwater ghost imaging compensated by water degradation function[67]. (a) Comparison of ghost imaging compensated by water degradation function, differential ghost imaging and Fourier ghost imaging; (b) results of ghost imaging compensated by water degradation function and Fourier ghost imaging at different sampling rates

下载图片 查看原文

图 21. 基于小波增强的水下压缩计算鬼成像68。(a)纯水下文献[68]中的方法、“俄罗斯娃娃”方法、基于四连接区域的方法、全变分方法、低等级的方法和“蛋糕切割”方法的成像结果;(b)浑水下文献[68]中的方法、“俄罗斯娃娃”方法、基于四连接区域的方法、全变分方法、低等级的方法和“蛋糕切割”方法的成像结果;(c)纯水下峰值信噪比与采样率的关系;(d)污水下峰值信噪比与采样率的关系

Fig. 21. Underwater compression computing ghost imaging based on wavelet enhancement[68]. (a) Imaging results of method in Ref.[68], "Russian Doll" method, method based on four connected region, total variation method, low grade method, and "Cake Cutting" method in tap water; (b) imaging results of method in Ref.[68], "Russian Doll" method, method based on four connected region, total variation method, low grade method, and "Cake Cutting" method in turbid water; (c) relationship between peak signal-to-noise ratio and sampling rate in tap water; (d) relationship between peak signal-to-noise ratio and sampling rate in turbid water

下载图片 查看原文

图 22. 基于压缩感知超分辨率卷积神经网络的水下鬼成像69。(a)基于压缩感知超分辨率卷积神经网络的重构示意图;(b)不同采样率下的仿真结果;(c)不同浑浊度下文献[69]中的方法、鬼成像和超分辨率卷积神经网络的仿真对比;(d)文献[69]中的方法、鬼成像和超分辨率卷积神经网络的实验结果对比;(e)不同采样率下文献[69]中的方法与全变分正则化的对比

Fig. 22. Underwater ghost imaging based on compressed sensing super-resolution convolutional neural network[69]. (a) Schematic diagram of reconstruction based on compressed sensing super-resolution convolutional neural network; (b) simulation results under different sampling rates; (c) simulation comparison of method in Ref.[69], ghost imaging and super-resolution convolutional neural network under different turbidities; (d) experimental result comparison of method in Ref. [69], ghost imaging and super-resolution convolutional neural network under different turbidities; (e) comparison between method in Ref. [69] and total variational regularization under different sampling rates

下载图片 查看原文

图 23. 基于生成对抗网络的水下鬼成像70。(a)基于生成对抗网络的水下鬼成像的装置示意图;(b)生成成对的水下数据集的Cycle-GAN网络模型结构;(c)成对的水下数据集;(d)生成对抗网络的模型结构;(e)基于生成对抗网络的水下鬼成像、金字塔深度学习鬼成像和U-Net深度学习鬼成像的仿真对比;(f)基于生成对抗网络的水下鬼成像、金字塔深度学习鬼成像和U-Net深度学习鬼成像的实验对比;(g)浑浊度对基于生成对抗网络的水下鬼成像、金字塔深度学习鬼成像和U-Net深度学习鬼成像的影响

Fig. 23. Underwater ghost imaging based on generative adversarial network[70]. (a) Experimental setup of underwater ghost imaging based on generative adversarial network; (b) Cycle-GAN network model structure for generating paired underwater data sets; (c) paired underwater data sets;(d) model structure of generative adversarial network; (e) simulation comparison of underwater ghost imaging based on generative adversarial network, pyramid deep learning ghost imaging and U-NET deep learning ghost imaging; (f) experimental comparison of underwater ghost imaging based on generative adversarial network, pyramid deep learning ghost imaging and U-NET deep learning ghost imaging; (g) influence of turbidity on underwater ghost imaging based on generative adversarial network, pyramid deep learning ghost imaging and U-NET deep learning ghost imaging

下载图片 查看原文

表 1水下鬼成像技术的指标对比

Table1. Comparison of indicators of underwater ghost imaging technology

YearWater quality(turbidity)AlgorithmSampling rateDistanceEvaluation parameter
20179

China clay and water

(85 NTU)

Correlation calculationSNR:7.8 dB
201961

China clay and water

(80 NTU)

Compressed sensing<20%1 m

PSNR:~6.5 dB;

SSIM:~0.38

202066

Milk and water

(32 NTU)

Correlation calculation30 cmSSIM:~0.3
202168

Milk and water

(ratio of milk to water:1∶9)

Compressed sensing2%20 cm

PSNR:~10.5 dB;

SSIM:~0.3

202169

Water

(0 NTU)

Neural network9.76%20 cm

PSNR:9.02 dB;

SSIM:0.1

202170

Milk and water

(20 mL milk)

Neural network2.5%95 cm

PSNR:17.98 dB;

SSIM:0.68

查看原文

杨莫愁, 吴仪, 冯国英. 水下鬼成像的研究进展[J]. 光学学报, 2022, 42(17): 1701003. Mochou Yang, Yi Wu, Guoying Feng. Research Progress on Underwater Ghost Imaging[J]. Acta Optica Sinica, 2022, 42(17): 1701003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!