硅酸盐学报, 2023, 51 (4): 907, 网络出版: 2023-04-15  

超低温烧结微波介质陶瓷制备工艺的研究进展

Recent Development on Ultra-Low Firing Technologies of Microwave Dielectric Ceramics
作者单位
1 西安交通大学材料科学与工程学院, 金属材料强度国家重点实验室, 西安 710049
2 南方科技大学材料科学与工程系, 广东 深圳 518055
摘要
传统方法制备微波介质陶瓷通常需要1 000 ℃以上高温, 不仅工艺周期长、能量消耗高, 而且难以实现多种材料体系的集成共烧。如今, 无线通讯技术的不断革新和蓬勃发展对微波器件小型化、集成化提出了更高要求, 低温共烧陶瓷/超低温共烧陶瓷技术被开发和广泛应用。研究烧结温度更低、烧结效率更高, 且微波介电性能优异的节能环保型绿色制备工艺, 已经成为全球范围内研究热点之一。液相烧结、热压烧结、微波烧结、放电等离子体烧结、闪烧等烧结工艺的提出促进了低温烧结微波介质陶瓷的发展。最近, 又出现了一种新的超低温烧结工艺-冷烧结技术。冷烧结具有极低的烧结温度(一般 ≤300 ℃)、可在短时间内实现陶瓷高致密化, 且在物相稳定性、复合共烧以及晶界控制等方面有着优势, 为超低温烧结工艺以及微波介质材料体系的开发提供了新的契机。
Abstract
Microwave dielectric ceramics prepared via a conventional method usually require a high sintering temperature (i.e., >1 000 ℃) and long sintering time, leading to a high energy consumption and a difficulty to realize the integration and co-firing of multiple material system. Continuous innovation and development of wireless communication technology put forward higher requirements for the miniaturization and integration of microwave devices, so that some technologies for preparing low-temperature co-fired ceramic (LTCC) and ultralow-temperature co-fired ceramic (ULTCC) are developed. Developing green sintering technologies with lower sintering temperatures and higher sintering efficiencies becomes one of the research hotspots. Novel sintering technologies (i.e., liquid-phase sintering, hot press sintering, microwave sintering, spark plasma sintering, and flash sintering) promote the development of microwave dielectric ceramics. A novel ultra-low temperature sintering technology called cold sintering process is proposed. The sintering temperature of cold sintering process is rather low (≤300 ℃), which can densify ceramics in a short time, and has some advantages in the phase stability, co-firing of multiple materials and grain boundary manipulation, thus providing an opportunity for the development of ultra-low temperature sintering technology and microwave dielectric material system.
参考文献

[1] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. Int Mater Rev, 2015, 60(7): 392-412.

[2] REANEY I M, IDDLES D. Microwave dielectric ceramics for resonators and filters in mobile phone networks[J]. J Am Ceram Soc, 2006, 89(7): 2063-2072.

[3] MIRSANEH M, REANEY I M, HAN Y, et al. Low sintering temperature high permittivity glass ceramic composites for dielectric loaded microwave antennas[J]. Adv Appl Ceram, 2011, 110(7): 387-393.

[4] LIU B, HUANG Y H, BAFROOEI H B, et al. Effects of structural transition on microwave dielectric properties of Sr3(Ti1-xSnx)2O7 ceramics[J]. J Eur Ceram Soc, 2019, 39(15): 4794-4799.

[5] PIRVARAM A, TAHERI-NASSAJ E, TAGHIPOUR-ARMAKI H, et al. Study on structure, microstructure and microwave dielectric characteristics of CaV2O6 and (Ca0.95M0.05)V2O6 (M=Zn, Ba) ceramics[J]. J Am Ceram Soc, 2019, 102(9): 5213-5222.

[6] ZHANG X, FANG Z X, JIANG Y H, et al. Microwave dielectric properties of a low firing and temperature stable lithium magnesium tungstate (Li4MgWO6) ceramic with a rock-salt variant structure[J]. J Eur Ceram Soc, 2021, 41(16): 171-178.

[7] YANG H Y, ZHANG S R, YANG H C, et al. Usage of P-V-L bond theory in studying the structural/property regulation of microwave dielectric ceramics: a review[J]. Inorg Chem Front, 2020, 7(23): 4711-4753.

[8] GUO J, BAKER A L, GUO H Z, et al. Cold sintering process: A new era for ceramic packaging and microwave device development[J]. J Am Ceram Soc, 2017, 100(2): 669-677.

[9] VARGHESE J, SIPONKOSKI T, NELO M, et al. Microwave dielectric properties of low-temperature sinterable alpha-MoO3[J]. J Eur Ceram Soc, 2018, 38(4): 1541-1547.

[10] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: A review[J]. Curr Opin Solid State Mater Sci, 2016, 20(3): 151-170.

[11] HAO S Z, ZHOU D, HUSSAIN F, et al. Structure, spectral analysis and microwave dielectric properties of novel x(NaBi)0.5MoO4-(1-x) Bi2/3MoO4 (x=0.2-0.8) ceramics with low sintering temperatures[J]. J Eur Ceram Soc, 2020, 40(10): 3569-3576.

[12] COBLE R L. Sintering crystalline solids. I. Intermediate and final state diffusion models[J]. J Appl Phys, 1961, 32(5): 787-792.

[13] COBLE R L. Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts[J]. J Appl Phys, 1961, 32(5): 793-799.

[14] KINGERY W D, BERG M. Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion[J]. J Appl Phys, 1955, 26(10): 1205-1212.

[15] GUO J, GUO H Z, BAKER A L, et al. Cold sintering: A paradigm shift for processing and integration of ceramics[J]. Angew Chem Int Ed, 2016, 55(38): 11457-11461.

[16] 张高群, 汪宏. 超低温烧结微波介质陶瓷研究进展[J]. 硅酸盐学报, 2017, 45(9): 1256-1264.

[17] 付长利, 李晓萌, 郭靖. 基于冷烧结技术的电介质材料研究进展[J]. 陕西师范大学学报(自然科学版), 2021, 49(4): 30-42.

[18] ZHOU D, PANG L X, QI Z M, et al. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal[J]. Sci Rep, 2014, 4:5980.

[19] LI X M, ZHANG Y, GUO J, et al. Nonstoichiometric microwave dielectric ceramics (Na0.5-xBi0.5+x/3)0.5Ca0.5MoO4 with low sintering temperatures[J]. J Eur Ceram Soc, 2021, 41(14): 7029-7034.

[20] XUE X, YUAN X F, MA R, et al. Temperature stable 0.35Ag2MoO4-0.65Ag0.5Bi0.5MoO4 microwave dielectric ceramics with ultra-low sintering temperatures[J]. J Eur Ceram Soc, 2019, 39(13): 3744-3748.

[21] YUAN X F, XUE X, WANG H. Preparation of ultra-low temperature sintering ceramics with ultralow dielectric loss in Na2O-WO3 binary system[J]. J Am Ceram Soc, 2019, 102(7): 4014-4020.

[22] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2WO4 ceramic with ultra-low sintering temperature[J]. J Am Ceram Soc, 2011, 94(2): 348-350.

[23] XIE H D, XI H H, CHEN C, et al. Microwave dielectric properties of two low temperature sintering ceramics in the PbO-WO3 binary system[J]. Ceram Int, 2015, 41(8): 10287-10292.

[24] SASIDHARANPILLAI A, KIM C H, LEE C H, et al. Environmental friendly approach for the development of ultra-low firing Li2WO4 ceramic tapes[J]. ACS Sustain Chem Eng, 2018, 6(5): 6849-6855.

[25] CHEN X Y, ZHANG W J, ZALINSKA B, et al. Low sintering temperature microwave dielectric ceramics and composites based on Bi2O3-B2O3[J]. J Am Ceram Soc, 2012, 95(10): 3207-3213.

[26] OHASHI M, OGAWA H, KAN A, et al. Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic[J]. J Eur Ceram Soc, 2005, 25(12): 2877-2881.

[27] ZHOU D, PANG L X, WANG D W, et al. High quality factor, ultralow sintering temperature Li6B4O9 microwave dielectric ceramics with ultralow density for antenna substrates[J]. ACS Sustain Chem Eng, 2018, 6(8): 11138-11143.

[28] MAEDA M, YAMAMURA T, IKEDA T. Dielectric characteristics of several complex oxide ceramics at microwave frequencies[J]. Jpn J Appl Phys, 1987, 26 (S2): 76-79.

[29] UDOVIC M, VALANT M, SUVOROV D. Phase formation and dielectric characterization of the Bi2O3-TeO2 system prepared in an oxygen atmosphere[J]. J Am Ceram Soc, 2004, 87(4): 591-597.

[30] NEELAKANTAN U A, KALATHIL S E, RATHEESH R. Structure and microwave dielectric properties of ultralow-temperature cofirable BaV2O6 ceramics[J]. Eur J Inorg Chem, 2015, 2015(2): 305-310.

[31] KALATHIL S E, NEELAKANTAN U A, RATHEESH R. Microwave dielectric properties of ultralow-temperature cofirable Ba3V4O13 ceramics[J]. J Am Ceram Soc, 2014, 97(5): 1530-1533.

[32] YAO G G, PEI C J, XU J G, et al. Microwave dielectric properties of CaV2O6 ceramics with low dielectric loss[J]. J Mater Sci-Mater Electron, 2015, 26(10): 7719-7722.

[33] ZHOU D, RANDALL C A, WANG H, et al. Ultra-low firing high-k scheelite structures based on [(Li0.5Bi0.5)xBi1-x][MoxV1-x]O4 microwave dielectric ceramics [J]. J Am Ceram Soc, 2010, 93(8): 2147-2150.

[34] GUO H H, ZHOU D, LIU W F, et al. Microwave dielectric properties of temperature-stable zircon-type (Bi, Ce)VO4 solid solution ceramics[J]. J Am Ceram Soc, 2020, 103(1): 423-431.

[35] LI C C, YIN C Z, KHALIQ J, et al. Ultralow-temperature synthesis and densification of Ag2CaV4O12 with improved microwave dielectric performances[J]. ACS Sustain Chem Eng, 2021, 9(43): 14461--14469.

[36] 刘伟, 冷寒生, 李波. 钴离子取代对Ca5Mg4-xCox(VO4)6陶瓷微波介电性能的影响[J]. 硅酸盐学报, 2021, 49(3): 441-447.

[37] 张迎春, 黄延伟, 张远谋, 等. 钙钛矿和类钙钛矿型微波介质陶瓷的研究进展[J]. 硅酸盐学报, 2021, 49(4): 618-632.

[38] 杨辉, 张启龙, 王家邦, 等. 微波介质陶瓷及器件研究进展[J]. 硅酸盐学报, 2003, 31(10): 965-973.

[39] 陈凯, 沈波, 姚熹, 等. Bi基微波介质材料研究进展[J]. 硅酸盐学报, 2006, 34(11): 1374-1381.

[40] GUO H Z, BAKER A, GUO J, et al. Cold sintering process: A novel technique for low-temperature ceramic processing of ferroelectrics[J]. J Am Ceram Soc, 2016, 99(11): 3489-3507.

[41] MARIA J P, KANG X Y, FLOYD R D, et al. Cold sintering: Current status and prospects[J]. J Mater Res, 2017, 32(17): 3205-3218.

[42] GUO J, ZHAO X T, DE BEAUVOIR T H, et al. Recent progress in applications of the cold sintering process for ceramic-polymer composites[J]. Adv Funct Mater, 2018, 28(39): 1801724.

[43] GUO J, FLOYD R, LOWUM S, et al. Cold sintering: Progress, challenges, and future opportunities[J]. Annu Rev Mater Res, 2019, 49: 275-295.

[44] HEIDARY D S B, LANAGAN M, RANDALL C A. Contrasting energy efficiency in various ceramic sintering processes[J]. J Eur Ceram Soc, 2018, 38(4): 1018-1029.

[45] GONZALEZ-JULIAN J, NEUHAUS K, BERNEMANN M, et al. Unveiling the mechanisms of cold sintering of ZnO at 250 ℃ by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy[J]. Acta Mater, 2018, 144: 116-128.

[46] HAO J Y, GUO J, ZHAO E D, et al. Grain size effect on microwave dielectric properties of Na2WO4 ceramics prepared by cold sintering process[J]. Ceram Int, 2020, 46(17): 27193-27198.

[47] WANG D W, ZHOU D, ZHANG S Y, et al. Cold-sintered temperature stable Na0.5Bi0.5MoO4-Li2MoO4 microwave composite ceramics[J]. ACS Sustain Chem Eng, 2018, 6(2): 2438-2444.

[48] WANG D W, ZHANG S Y, ZHOU D, et al. Temperature stable cold sintered (Bi0.95Li0.05)(V0.9Mo0.1)O4-Na2Mo2O7 microwave dielectric composites[J]. Materials, 2019, 12(9):1370.

[49] MA M T, SONG K X, JI Y P, et al. 5G microstrip patch antenna and microwave dielectric properties of cold sintered LiWVO6-K2MoO4 composite ceramics[J]. Ceram Int, 2021, 47(13): 19241-19246.

[50] HAO J Y, GUO J, MA C S, et al. Cold sintering of Na2WO4 ceramics using a Na2WO4-2H2O chemistry[J]. J Eur Ceram Soc, 2021, 41(12): 6029-6034.

[51] HAO J Y, GUO J, FU C L, et al. The effects of cold sintering parameters on the densification of Na2WO4 ceramics using Na2WO4 · 2H2O dry powders[J]. J Am Ceram Soc, 2022, 105(8): 5058-5068.

[52] PANG L X, ZHOU D, LI W B, et al. High quality microwave dielectric ceramic sintered at extreme-low temperature below 200?倖 and co-firing with base metal[J]. J Eur Ceram Soc, 2017, 37(9): 3073-3077.

[53] HONG W B, LI L, YAN H, et al. Cold sintering and microwave dielectric properties of dense HBO2-II ceramics[J]. J Am Ceram Soc, 2019, 102(10): 5934-5940.

[54] WANG D W, CHEN J R, WANG G, et al. Cold sintered LiMgPO4 based composites for low temperature co-fired ceramic (LTCC) applications[J]. J Am Ceram Soc, 2020, 103(11): 6237-6244.

[55] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of mineral sillimanite obtained by conventional and cold sintering process[J]. J Eur Ceram Soc, 2017, 37(5): 2143-2147.

[56] INDUJA I J, SEBASTIAN M T. Microwave dielectric properties of cold sintered Al2O3-NaCl composite[J]. Mater Lett, 2018, 211: 55-57.

[57] HONG W B, LI L, CAO M, et al. Plastic deformation and effects of water in room-temperature cold sintering of NaCl microwave dielectric ceramics[J]. J Am Ceram Soc, 2018, 101(9): 4038-4043.

[58] SANTHA N, RAKHI M, SUBODH G. Fabrication of high quality factor cold sintered MgTiO3-NaCl microwave ceramic composites[J]. Mater Chem Phys, 2020, 255:123636.

[59] SI M M, HAO J Y, ZHAO E D, et al. Preparation of zinc oxide/poly-ether-ether-ketone (PEEK) composites via the cold sintering process[J]. Acta Mater, 2021, 215:117036.

[60] SI M M, GUO J, HAO J Y, et al. Cold sintered composites consisting of PEEK and metal oxides with improved electrical properties via the hybrid interfaces[J]. Compos B Eng, 2021, 226:109349.

[61] GUO J, SI M M, ZHAO X T, et al. Altering interfacial properties through the integration of C60 into ZnO ceramic via cold sintering process[J]. Carbon, 2022, 190: 255-261.

[62] LI Y Q, ZHENG M P, ZANG M Y, et al. Cold sintering co-firing of (Ca,Bi)(Mo,V)O4-PTFE composites in a single step[J]. J Am Ceram Soc, 2022, 105(10): 6262-6270.

[63] GUO J, GUO H Z, HEIDARY D S B, et al. Semiconducting properties of cold sintered V2O5 ceramics and co-sintered V2O5-PEDOT: PSS composites[J]. J Eur Ceram Soc, 2017, 37(4): 1529-1534.

[64] GUO J, LEGUM B, ANASORI B, et al. Cold sintered ceramic nanocomposites of 2D MXene and zinc oxide[J]. Adv Mater, 2018, 30(32):1801846.

[65] SEO J H, VERLINDE K, GUO J, et al. Cold sintering approach to fabrication of high rate performance binderless LiFePO4 cathode with high volumetric capacity[J]. Scripta Mater, 2018, 146: 267-271.

[66] FAOURI S S, MOSTAED A, DEAN J S, et al. High quality factor cold sintered Li2MoO4-BaFe12O19 composites for microwave applications[J]. Acta Mater, 2019, 166: 202-207.

[67] GUO J, PFEIFFENBERGER N, BEESE A, et al. Cold sintering Na2Mo2O7 ceramic with poly (ether imide) (PEI) polymer to realize high-performance composites and integrated multilayer circuits[J]. ACS Appl Nano Mater, 2018, 1(8): 3837-3844.

[68] DE BEAUVOIR T H, DURSUN S, GAO L S, et al. New opportunities in metallization integration in cofired electroceramic multilayers by the cold sintering process[J]. ACS Appl Electro Mater, 2019, 1(7): 1198-1207.

[69] GUO J, BERBANO S S, GUO H Z, et al. Cold sintering process of composites: Bridging the processing temperature gap of ceramic and polymer materials[J]. Adv Funct Mater, 2016, 26(39): 7115-7121.

[70] 康晟淋, 赵学童, 张洁心, 等. 冷烧结技术的研究进展及其在电工领域的潜在应用[J]. 电工技术学报, 2022, 37(5): 1098-1114.

[71] BROSNAN K H, MESSING G L, AGRAWAL D K. Microwave sintering of alumina at 2.45 GHz [J]. J Am Ceram Soc, 2003, 86(8): 1307-1312.

[72] BENAVENTE R, SALVADOR M D, PENARANDA-FOIX F L, et al. High thermal stability of microwave sintered low-r β-eucryptite materials[J]. Ceram Int, 2015, 41(10): 13817-13822.

[73] KESHAVARZ M, EBADZADEH T, BANIJAMALI S. Preparation of forsterite/MBS (MgO-B2O3-SiO2) glass-ceramic composites via conventional and microwave assisted sintering routes for LTCC application[J]. Ceram Int, 2017, 43(12): 9259-9266.

[74] SINDAM B, GOUD J P, RAJU K C J. Microwave assisted synthesis of Ba(Zn1/3Ta2/3)O3 nanoparticles[J]. Mater Today, 2016, 3(6): 2101-2106.

[75] MARINEL S, CHOI D H, HEUGUET R, et al. Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes[J]. Ceram Int, 2013, 39(1): 299-306.

[76] WANG X, LI L, HONG W B, et al. Preparation and microwave dielectric properties of BPO4 ceramics with ultra-low dielectric constant[J]. J Mater Sci-Mater Electron, 2021, 32(5): 6660-6667.

[77] ZHANG X R, LIU C Y, LIU R, et al. Coordinating microwave dielectric and optical properties of transparent yttrium aluminum garnet ceramics by regulating spark plasma sintering parameters[J]. Mater Sci Eng B, 2020, 260:114628.

[78] LIU F, LIU S J, CUI X J, et al. Ordered domains and microwave properties of sub-micron structured Ba(Zn1/3Ta2/3)O3 ceramics obtained by spark plasma sintering[J]. Materials, 2019, 12(4): 638.

[79] FU P, WANG Z Y, LIN Z D, et al. The microwave dielectric properties of transparent ZnAl2O4 ceramics fabricated by spark plasma sintering[J]. J Mater Sci-Mater Electron, 2017, 28(13): 9589-9595.

[80] WU J M, HUANG H L. Microwave properties of zinc, barium and lead borosilicate glasses[J]. J. Non-Cryst Solids, 1999, 260(1/2): 116-124.

[81] COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping[J]. J Eur Ceram Soc, 2011, 31(15): 2827-2837.

[82] M'PEKO J C, FRANCIS J S C, RAJ R. Field-assisted sintering of undoped BaTiO3: Microstructure evolution and dielectric permittivity[J]. J Eur Ceram Soc, 2014, 34(15): 3655-3660.

[83] ZAPATA-SOLVAS E, BONILLA S, WILSHAW P R, et al. Preliminary investigation of flash sintering of SiC[J]. J Eur Ceram Soc, 2013, 33(13/14): 2811--2816.

[84] GRASSO S, SAUNDERS T, PORWAL H, et al. Flash spark plasma sintering (FSPS) of pure ZrB2[J]. J Am Ceram Soc, 2014, 97(8): 2405-2408.

[85] ROSSI R C, Fulrath RM. Final stage densification in vacuum hot-pressing of alumina[J]. J Am Ceram Soc, 1965, 48(11): 558-564.

[86] WU W W, ZHANG G J, KAN Y M, et al. Reactive hot pressing of ZrB2-SiC-ZrC ultra high-temperature ceramics at 1 800 ℃[J]. J Am Ceram Soc, 2006, 89(9): 2967-2969.

[87] WANG W M, FU Z Y, WANG H, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics[J]. J Eur Ceram Soc, 2002, 22(7): 1045-1049.

[88] ZHANG G J, DENG Z Y, KONDO N, et al. Reactive hot pressing of ZrB2-SiC composites[J]. J Am Ceram Soc, 2000, 83(9): 2330-2332.

[89] JAEGER R E, EGERTON L. Hot pressing of potassium-sodium niobates[J]. J Am Ceram Soc, 1962, 45(5): 209-213.

[90] NDAYISHIMIYE A, LARGETEAU A, MORNET S, et al. Hydrothermal sintering for densification of silica. Evidence for the Role of Water[J]. J Eur Ceram Soc, 2018, 38(4): 1860-1870.

[91] YANAGISAWA K, NISHIOKA M, IOKU K, et al. Densification of silica gels by hydrothermal hot-pressing[J]. J Mater Sci Lett, 1993, 12(14): 1073-1075.

[92] YAMASAKI N, KAI T, NISHIOKA M, et al. Porous hydroxyapatite ceramics prepared by hydrothermal hot-pressing[J]. J Mater Sci Lett, 1990, 9(10): 1150-1151.

[93] YANAGISAWA K, IOKU K, YAMASAKI N. Formation of anatase porous ceramics by hydrothermal hot-pressing of amorphous titania spheres[J]. J Am Ceram Soc, 1997, 80(5): 1303-1306.

[94] YAMASAKI N, WEIPING T, JIAJUN K. Low-temperature sintering of calcium carbonate by a hydrothermal hot-pressing technique[J]. J Mater Sci Lett, 1992, 11(13): 934-936.

[95] NDAYISHIMIYE A, LARGETEAU A, PRAKASAM M, et al. Low temperature hydrothermal sintering process for the quasi-complete densification of nanometric alpha-quartz[J]. Scr Mater, 2018, 145: 118-121

李晓萌, 薛仙, 汪宏, 郭靖. 超低温烧结微波介质陶瓷制备工艺的研究进展[J]. 硅酸盐学报, 2023, 51(4): 907. LI Xiaomeng, XUE Xian, WANG Hong, GUO Jing. Recent Development on Ultra-Low Firing Technologies of Microwave Dielectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 907.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!