光学与光电技术, 2023, 21 (5): 24, 网络出版: 2023-12-29  

基于PGC解调的弱光纤光栅阵列干涉式温度传感方法研究

Research on Interference Temperature Sensing Method of Weak Fiber Bragg Grating Array Based on PGC Demodulation
作者单位
1 武汉理工大学光纤传感技术与网络国家工程研究中心, 湖北 武汉 430070
2 武汉理工大学信息工程学院, 湖北 武汉 430070
3 武汉理工大学机电工程学院, 湖北 武汉 430070
摘要
海洋温度监测对于研究和保护海洋生态环境具有重要价值, 在防止海洋自然灾害的发生方面有着极重要的实际意义。传统的电传感器远距离供电难, 且难以满足大规模传感网络的复用需求。基于弱光纤光栅阵列的干涉式传感系统平台, 提出了运用相位生成载波(Phase Generated Carrier, PGC)算法解调温度信号的干涉式高精度温度传感方法。在26.00~30.00 ℃的范围内连续升温测量, 温度相位灵敏度为1 132.6 rad/℃, 皮尔逊平方相关系数R2为0.999 3, 理论上温度灵敏度可以达到0.000 1 ℃。结果表明, 将常规用来解调动态信号的方法应用到温度这种准静态信号的解调中, 能实现高灵敏度探测, 在海洋温度监测应用中有较好的应用潜力。
Abstract
Ocean temperature monitoring is of great value for the study and protection of marine ecological environment and of great practical significance in preventing the occurrence of marine natural disasters. Traditional electric sensors are difficult to supply power at a long distance, and it is difficult to meet the multiplexing requirements of large-scale sensor networks. Based on the interferometric sensing system platform of weak fiber Bragg grating array, this paper presents an interferometric high precision temperature sensing method which uses phase generated carrier (PGC) algorithm to demodulate temperature signals. In the range of 26.00~30.00 ℃, the temperature phase sensitivity is 1 132.6 rad/℃ and Pearson square correlation coefficient is 0.999 3. Theoretically, the temperature sensitivity can reach 0.000 1 ℃. The results show that the method of demodulation of dynamic signals can achieve high sensitivity detection by applying it to the demodulation of quasi-static signals such as temperature, which has a good application potential in the application of ocean temperature monitoring.
参考文献

[1] Venkateswarlu S, Nayak K. Hetero-interfacial thermal resistance effects on device performance of stacked gate-all-around nanosheet FET[J]. IEEE Transactions on Electron Devices, 2020, 67(10): 4493-4499.

[2] 张志勇, 王雪文, 翟春雪. 现代传感器原理及应用[M]. 北京: 电子工业出版社, 2014.

[3] 杨宇. 基于热电偶动态校准系统的半导体激光器上升时间测试分析[J]. 光电技术应用, 2014, 29(2): 4.

[4] Lillis E A, Cleary J A, Miranda E M. Method and a measuring circuit for determining temperature from a PN junction temperature sensor, and a temperature sensing circuit comprising the measuring circuit and a PN junction: US, US7010440 B1[P]. 2006-03-07.

[5] El-Ali J, Perch-Nielsen I R, Poulsen C R, et al. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor[J]. Sensors & Actuators A Physical, 2004, 110(1-3): 3-10.

[6] Li Y, Qian L, Zhou C M, et al. Multiple-octave-spanning vibration sensing based on simultaneous vector demodulation of 499 fizeau interference signals from identical ultra-weak fiber bragg gratings over 2.5 km[J]. Sensors, 2018, 18(1): 210.

[7] Islam M, Ali M, Lai M H, et al. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review[J]. Sensors, 2014, 14(4): 7451-7488.

[8] Batumalay M, Harun S W, Irawati N, et al. A Study of relative humidity fiber-optic sensors[J]. IEEE Sensors Journal, 2015, 15(3): 1945-1950.

[9] 韩晓鹏, 柳春郁, 赵纯龙, 等. 基于马赫曾德尔干涉原理的优化双锥结构应变温度同步传感[J]. 光子学报, 2020, 49(8): 10.

[10] Guan B, Dong X, Liu Z, et al. Active demodulation system for multiplexed FBG sensors[J]. Proceedings of Spie the International Society for Optical Engineering, 2001, 4357(3):13-16.

[11] 姜德生, 范典, 梅加纯. 基于FBG传感器的分复用技术[J]. 激光与光电子学进展, 2005, 42(4): 14-19.

[12] Choi H Y, Park K S, Park S J, et al. Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer[J]. Optics Letters, 2008, 33(21): 2455-2460.

[13] Zou X, Chao A, Ye T, et al. An experimental study on the concrete hydration process using Fabry-Perot fiber optic temperature sensors[J]. Measurement, 2012, 45(5): 1077-1082.

[14] 高晓丹, 彭建坤, 吕大娟. 法布里-珀罗薄膜干涉的光纤温度传感器[J]. 红外与激光工程, 2018, 47(1): 5-10.

[15] Liu F, Zhang Y, Meng F, et al. Complex optical fiber sensor based on the Vernier effect for temperature sensing[J]. Optical Fiber Technology, 2021, 61(2): 102424.

[16] Moradi H, Parvin P, Ojaghloo A, et al. Ultrasensitive fiber optic Fabry Pérot acoustic sensor using phase detection[J]. Measurement, 2021, 172: 108953.

[17] Petrovic M, Mihailovic P, Brajovic L, et al. Intensity Fiber-optic sensor for structural health monitoring calibrated by impact tester[J]. IEEE Sensors Journal, 2016, 16(9): 3047-3053.

[18] Fang G, Xu T, Feng S, et al. Phase-sensitive optical time domain reflectometer based on phase-generated carrier algorithm[J]. Journal of Lightwave Technology, 2015, 33(13): 2811-2816.

[19] Tong Y W, Zeng H L, Li L Y, et al. Improved phase generated carrier demodulation algorithm for eliminating light intensity disturbance and phase modulation amplitude variation[J]. Applied Optics, 2012, 51(29): 6962-6967.

[20] Yu Z, Dahir A K A, Dai H, et al. Distributed optical fiber vibration sensors based on unbalanced Michelson interferometer and PGC demodulation[J]. Journal of Optics, 2021, 50(1): 1-6.

徐烨, 刘涵洁, 潘震, 汪立雄, 范典, 周次明. 基于PGC解调的弱光纤光栅阵列干涉式温度传感方法研究[J]. 光学与光电技术, 2023, 21(5): 24. XU Ye, LIU Han-jie, PAN Zhen, WANG Li-xiong, FAN Dian, ZHOU Ci-ming. Research on Interference Temperature Sensing Method of Weak Fiber Bragg Grating Array Based on PGC Demodulation[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2023, 21(5): 24.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!