量子电子学报, 2021, 38 (4): 529, 网络出版: 2021-09-01  

共振电离对原子分子谐波光谱强度的影响

Effect of resonance ionization on harmonic intensity of atom and molecule systems
作者单位
辽宁工业大学理学院, 辽宁 锦州 121001
摘要
为了增强高次谐波光谱强度, 提出了一种利用共振电离机制来提高谐波强度的方法。结果表明: 在 He 原子体系中, 受紫外共振电离影响, 谐波强度有 50 倍的增强。并且, 在啁啾场驱动下, 谐波截止能量也能增大, 进而获得一个高强度超宽谐波平台区。在 H2+ 分子体系中, 受电荷共振增强电离影响, 谐波强度也有近 20 倍的增强。并且在半周期单极场优化下, 该体系谐波截止能量也得到延伸, 进而获得一个只由单能量峰贡献的谐波平台区。进一步研究表明, 在两个体系的谐波平台区上选择一定的谐波叠加, 可分别获得脉宽在 36 as 和 32 as 的阿秒脉冲。初步的研究证实了所提出的方案有助于增强阿秒脉冲强度。
Abstract
In order to enhance the intensity of high order harmonic spectrum, a method of improving harmonic intensity by using resonance ionization is proposed. The results show that, in case of He atom system, the harmonic intensity can be enhanced by 50 times under the influence of ultraviolet resonance ionization. Moreover, with the introduction of chirped pulse, the harmonic cutoff can also be extended, showing an intense and broad harmonic plateau. In case of H+2 molecule system, the harmonic intensity canbe enhanced by nearly 20 times under the influence of charge resonance enhanced ionization. And with the optimization of the half-cycle unipolar pulse, the extension of harmonic cutoff for H+2 molecule system can also be achieved, showing a harmonic plateau contributed by single harmonic emission peak. The further study shows that by superposing some harmonics on the harmonic plateaus, the attosecond pulses with durations of 36 as and 32 as can be obtained for the two systems, respectively. It is confirmed that the proposed scheme is helpful to enhance the intensity of attosecond pulse.
参考文献

[1] Sansone G, Benedetti E, Calegari F, et al. Isolated single-cycle attosecond pulses[J]. Science, 2006, 314(5798): 443-446.

[2] Liu H, Feng L Q. Theoretical investigation on harmonic emission and attosecond pulse generation from H+2 molecule under spatial inhomogeneous field[J]. Chinese Journal of Quantum Electronics, 2017, 34(2): 162-169.

[3] Feng L Q. Characteristics of high-order harmonic emission from He+ in bowtie-shaped metal nanostructure[J]. Chinese Journal of Quantum Electronics, 2018, 35(4): 479-485.

[4] Feng L Q. Molecular harmonic extension and enhancement from H+2 ions in the presence of spatially inhomogeneous fields[J]. Physical Review A, 2015, 92(5): 053832.

[5] Corkum P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13): 1994-1997.

[6] Feng L Q, Liu H. Generation of the ultrabroad bandwidth with keV by three-color low intense mid-infrared inhomogeneous pulse[J]. Optics & Laser Technology, 2016, 81: 7-13.

[7] Cao X, Jiang S C, Yu C, et al. Generation of isolated sub-10-attosecond pulses in spatially inhomogenous two-color fields[J]. Optics Express, 2014, 22(21): 26153-26161.

[8] Feng L Q, Chu T S. Generation of an isolated sub-40-as pulse using two-color laser pulses: Combined chirp effects[J]. Physical Review A, 2011, 84(5): 053853.

[9] Li Y, Feng L Q, Qiao Y. Improvement of high-order harmonic generation via controlling multiple acceleration-recombination process[J]. Zeitschrift für Naturforschung A, 2019, 74(7): 561-571.

[10] Ciappina M F, Pérez-Hernández J A, Landsman A S, et al. Attosecond physics at the nanoscale[J]. Reports on Progress in Physics, 2017, 80(5): 054401.

[11] Liu H, Feng L Q. Attosecond X-ray sources generation from pre-excited He+ ions using mid-infrared homogeneous and inhomogeneous fields[J]. Laser Physics, 2015, 25(10): 105301.

[12] Feng L Q, Chu T S. Nuclear signatures on the molecular harmonic emission and the attosecond pulse generation[J]. The Journal of Chemical Physics, 2012, 136(5): 054102.

[13] Li L, Zheng M, Feng R L, et al. Waveform control in generations of intense water window attosecond pulses via multi-color combined field[J]. International Journal of Modern Physics B, 2019, 33(13): 1950130.

[14] Li Y, Feng R L, Qiao Y. Improvement of harmonic spectra from superposition of initial state driven by homogeneous and inhomogeneous combined field[J]. Canadian Journal of Physics, 2020, 98(2): 198-209.

[15] Lu R F, Zhang P Y, Han K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields[J]. Physical Review E: Statistical, Nonlinear, and soft Matter Physics, 2008, 77(6): 066701.

[16] Hu J, Han K L, He G Z. Correlation quantum dynamics between an electron and D+2 molecule with attosecond resolution[J]. Physical Review Letters, 2005, 95(12): 123001.

[17] Burnett K, Reed V C, Cooper J, et al. Calculation of the background emitted during high-harmonic generation[J]. Physical Review A, 1992, 45(5): 3347-3349.

[18] Liu H, Li Y, Feng L Q. Generation of single harmonic emission peak by using chirped combined field[J]. Laser Technology, 2020, 44(3): 283-287.

[19] Liu H, Li W L, Feng L Q. Chirp control of multi-photon resonance ionization and charge-resonance enhanced ionization on molecular harmonic generation[J]. Chemical Physics Letters, 2017, 676: 118-123.

冯立强. 共振电离对原子分子谐波光谱强度的影响[J]. 量子电子学报, 2021, 38(4): 529. FENG Liqiang. Effect of resonance ionization on harmonic intensity of atom and molecule systems[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 529.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!