激光技术, 2023, 47 (6): 766, 网络出版: 2023-12-05  

激光制备新型石墨烯/银基触头及其性能研究

Fabrication of novel graphene/silver-based contacts using laser processing and the physical properties
作者单位
1 清华大学 材料学院,北京 100083
2 陕西科技大学 材料科学与工程学院,西安 710000
3 清研(洛阳)先进制造产业研究院,洛阳 471000
摘要
为了解决低压器件中银基触头易熔焊、易烧蚀、电寿命不足的问题,采用了激光法制备新型石墨烯/银基复合触头。通过激光熔覆技术在商用AgNi15触头表面制备了全覆盖的石墨烯薄膜,将其作为独立涂层抵抗环境的破坏; 进行了理论分析和实验验证,取得了最优工艺条件及相应的性能数据。结果表明,所制备的新型石墨烯/银基复合触头硬度为104.05 HV,密度为9.15 g/cm3,接触电阻为0.016 Ω。该研究为高性能低压触头提供了新的解决方案和实验基础。
Abstract
In order to solve the problem of silver-based contacts in low-voltage devices, which were prone to fusion and ablation, leading to insufficient electrical life, a new graphene/silver-based composite contact was prepared by the laser method. A fully covered graphene film was prepared on the surface of commercial AgNi15 contacts by laser cladding technology as a stand-alone coating to resist environmental damage. Theoretical analysis and experimental verification were carried out to obtain the optimal process conditions and corresponding performance data. The results demonstrate that the hardness of graphene/silver composite contact is 104.05 HV, the density is 9.15 g/cm3, and the contact resistance is 0.016 Ω. The new solution protocol and experimental bases have been provided for the fabrication of high-performance low-pressure contacts in this study.
参考文献

[1] HAN Ch Y, WANG Zh B, WANG Zh, et al. Development of contact material and its performance testing technology[J]. Electrical Engineering Materials, 2019,47(1): 27-30(in Chinese).

[2] JIANG D Zh, ZHANG J, BAI Y L, et al. Application performance and preparation technology of AgNi contact materials[J]. Electrical Engineering Materials, 2014,42(3): 19-23(in Chinese).

[3] LI Q N, BAO K, ZHOU X, et al. Experimental study on feature of molten bridge of silver based contacts under slow separation[J]. Electrical & Energy Management Technology, 2016,58(15): 54-58(in Chinese).

[4] GUO T F, FU Ch, WANG J B, et al. Research and progress of silver-nickel contact materials containing additives[J]. Electrical Engineering Materials, 2015, 58(2): 34-38(in Chinese).

[5] CHEN H Y, XIE M, WANG J, et al. The advances and developmental trend of Ag/SnO2 electrical contact material[J]. Precious Metals, 2011, 32(2): 77-81(in Chinese).

[6] ZEER G M, ZELENKOVA E G, SIDORAK A V, et al. A silver-based electrocontact material dispersion-strengthened with zinc, tin, and titanium oxides[J]. Technical Physics, 2020, 65(8): 1253-1260.

[7] BIYIK S, ARSLAN F, AYDIN M. Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying[J]. Journal of Electronic Materials, 2015, 44(1): 457-466.

[8] HE Q, YANG H, CHEN L, et al. Study on the mechanical alloying process for preparing Ag/LSCO electrical contact material[J]. Procedia Engineering, 2014, 94: 37-43.

[9] LIU Y, GAO M, XU S, et al. Study on electroconductive tribological properties of Ag-based composite coating[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(8): 1405-1413.

[10] HAO X, WANG X, ZHOU S, et al. Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene[J]. Materials Chemistry and Physics, 2018, 215: 327-331.

[11] WANG P, WEI Z, SHEN M, et al. In-situ synthesized silver-graphene nanocomposite with enhanced electrical and mechanical pro-perties[C]//IEEE Holm Conference on Electrical Contact. Denver, USA: Institute of Electrical and Electronics Engineers, 2017: 225-228.

[12] NAGHDI S, RHEE K Y, PARK S J. A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition: Low temperature growth[J]. Carbon, 2018, 127: 1-12.

[13] LIN L, DENG B, SUN J Y, et al. Bridging the gap between reality and ideal in chemical vapor deposition growth of graphene[J]. Chemical Reviews, 2018, 118(18): 9281-9343.

[14] GUAN Zh H, YU Zh Y, QIAO Zh J, et al. Preparation of irrsitu growth three-dimensional Cu@graphene composite by chemical vapor deposition[J]. Journal of Materials Science & Engineering, 2021, 39(4): 575-579(in Chinese).

[15] SUN Zh Y, JI L F, LIN Zh Y, et al. Effect of crystal orientation on synthesis of graphene layers by laser decomposition of 4H-SiC[J]. Chinese Journal of Lasers, 2020, 47(8): 0802002(in Chinese).

[16] YE X H. Rapid laser in-situ growth of graphene and its anti-corrosion performance[D]. Beijing: Tsinghua University, 2015: 35-59(in Chinese).

[17] YE X H, LONG J Y, LIN Zh, et al. Direct laser fabrication of large-area and patterned graphene at room temperature[J]. Carbon, 2014, 68: 784-790.

[18] YE X H, LIN Zh, ZHANG H J, et al. Protecting carbon steel from corrosion by laser in situ grown graphene films[J]. Carbon, 2015, 94: 326-334.

[19] LIU Zh, FANG J, LI Y Ch, et al. Pore characteristics of SiC/SiC composite thick plate machined by femtosecond laser[J]. Laser Technology,2022, 46(6): 736-741(in Chinese).

[20] LI L Ch, WEI Ch. Influence of WC on crack formation mechanism of laser cladding composite coating[J]. Laser Technology, 2023,47(1): 52-58(in Chinese).

[21] ZHOU L, LONG Y H, JIAO H, et al. Research advancement on laser processing carbon fiber reinforced plastics[J]. Laser Technology, 2022, 46(1): 110-119(in Chinese).

[22] XU G H, LI X Ch, DONG B, et al. A novel graphene/copper hybrid electrical contact fabrication by laser processing[J]. Laser Technology, 2023,47(2):225-232(in Chinese).

[23] WANG Zh Y. Technical specification for silver-nickel, silver-iron electrical contacts:GB/T 5588-2017[S]. Beijing: China Standard Press, 2017(in Chinese).

[24] LIN Zh J, FAN S Y, LIU M M, et al. Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material[J]. Journal of Alloys and Compounds, 2019, 788: 163-171.

[25] FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18): 187401.

[26] BLEU Y, BOURQUARD F, LOIR A S, et al. Raman study of the substrate influence on graphene synthesis using a solid carbon source via rapid thermal annealing[J]. Journal of Raman Spectroscopy, 2019, 50(11): 1630-1641.

杨倩倩, 刘源, 叶晓慧, 强豪, 邵星海, 曹磊. 激光制备新型石墨烯/银基触头及其性能研究[J]. 激光技术, 2023, 47(6): 766. YANG Qianqian, LIU Yuan, YE Xiaohui, QIANG Hao, SHAO Xinghai, CAO Lei. Fabrication of novel graphene/silver-based contacts using laser processing and the physical properties[J]. Laser Technology, 2023, 47(6): 766.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!