硅酸盐通报, 2023, 42 (9): 3350, 网络出版: 2023-11-03  

Cu2O纳米微晶玻璃的显微结构及性能研究

Microstructure and Properties of Glass-Ceramics Containing Cu2O Nanocrystallines
作者单位
1 武汉理工大学硅酸盐建筑材料国家重点实验室,武汉 430070
2 武汉理工大学材料科学与工程国际化示范学院(材料与微电子学院),武汉 430070
3 湖北省特种玻璃工程技术研究中心,武汉 430070
摘要
新型Cu2O纳米微晶玻璃具有高Cu载量、低成本和易大规模制备等特点,有望成为载银抗菌玻璃较有潜力的替代者。通过采用XRD、Raman光谱、XPS、FESEM和TEM等表征方法重点研究了不同ZnO/K2O比对SiO2-Al2O3-K2O-ZnO-P2O5-B2O3-CuO微晶玻璃显微结构的影响,并分析讨论了其结构-性能关系。结果表明,微晶玻璃中Zn与P元素会富集在Cu元素所在区域的附近,适量的ZnO能使微晶玻璃中析出的Cu2O晶粒尺寸稳定在纳米级别,并能调节微晶玻璃中Cu元素的浸出速率。Cu2O纳米微晶玻璃对大肠杆菌和金黄色葡萄球菌均具有显著的抗菌效果,并能实现对维多利亚蓝B溶液的可见光催化降解,是一种极具发展潜力的新型功能微晶玻璃材料。
Abstract
Novel glass-ceramics containing Cu2O nanocrystallines with features of high Cu loading amount, low cost and easy large scale production is a potential substitute for silver loaded antibacterial glass. In this study, SiO2-Al2O3-K2O-ZnO-P2O5-B2O3-CuO glass-ceramics with different ZnO/K2O were investigated. Their microstructures were characterized by XRD, Raman spectroscopy, XPS, FESEM and TEM. The structure-performance relationship was also discussed. The results indicate that there is an enrichment of Zn and P elements around the region where Cu element locates in the glass-ceramics. An appropriate amount of ZnO makes sure the particles size of Cu2O crystallines precipitated in glass-ceramics be in nano-scale and regulate the leaching rate of Cu element. Glass-ceramics containing Cu2O nanocrystallines exhibit significant antibacterial effects on Escherichia coli and Staphylococcus aureus. They also show photocatalysis activity for degradation of Victoria blue B solution under visible light. It should be a novel functional glass-ceramics material with great potential.
参考文献

[1] SJAUS A, D’ENTREMONT M. Measurement of airborne particle exposure during simulated tracheal intubation using various proposed aerosol containment devices during the COVID-19 pandemic[J]. Anaesthesia, 2020, 76: 7-8.

[2] WOLF J, BRUNO S, EICHBERG M, et al. Applying lessons from the Ebola vaccine experience for SARS-CoV-2 and other epidemic pathogens[J]. NPJ Vaccines, 2020, 5: 51.

[3] HAJIPOUR M J, FROMM K M, AKBAR ASHKARRAN A, et al. Antibacterial properties of nanoparticles[J]. Trends in Biotechnology, 2012, 30(10): 499-511.

[4] HUH A J, KWON Y J. “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era[J]. Journal of Controlled Release, 2011, 156(2): 128-145.

[5] SUNADA K, MINOSHIMA M, HASHIMOTO K. Highly efficient antiviral and antibacterial activities of solid-state cuprous compounds[J]. Journal of Hazardous Materials, 2012, 235/236: 265-270.

[6] POPOV S, SAPHIER O, POPOV M, et al. Factors enhancing the antibacterial effect of monovalent copper ions[J]. Current Microbiology, 2020, 77(3): 361-368.

[7] WU W T, ZHAO W J, WU Y H, et al. Antibacterial behaviors of Cu2O particles with controllable morphologies in acrylic coatings[J]. Applied Surface Science, 2019, 465: 279-287.

[8] ASHRAF M E S, ABD E M, AZZAM A M, et al. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating[J]. International Journal of Biological Macromolecules, 2016, 89: 190-197.

[9] ZHOU J L, WANG C C, CUNNINGHAM A J, et al. Synthesis and characterization of size-controlled nano-Cu2O deposited on alpha-zirconium phosphate with excellent antibacterial property[J]. Materials Science and Engineering: C, 2019, 101: 499-504.

[10] ZHAO Y Z, YAN J H, YANG L, et al. Preparation and application of (Cu2O-Ag)@TA composite nanomaterials with enhanced stability and photocatalytic antibacterial activity[J]. Journal of Vinyl and Additive Technology, 2023, 29(1): 5-16.

[11] SUN X L, LI Z C, ZHAO X H, et al. Preparation and properties of calcium alginate nano-Cu2O flame retardant antimicrobial membrane material[C]//Proceedings of the 2016 2nd International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2016). September 29-30, 2016. Kunming City, China. Paris, France: Atlantis Press, 2016.

[12] 刘小明, 程金树, 徐 英, 等. 抗菌玻璃材料的研究与发展[J]. 玻璃, 2003, 30(4): 6-8.

[13] 程金树, 刘小明, 汤李缨. 磷酸盐抗菌玻璃材料的制备及性能研究[J]. 武汉理工大学学报, 2005, 27(1): 1-3.

[14] ZHENG K, KANG J, RUTKOWSKI B, et al. Toward highly dispersed mesoporous bioactive glass nanoparticles with high Cu concentration using Cu/ascorbic acid complex as precursor[J]. Frontiers in Chemistry, 2019, 7: 497.

[15] HEYL H, YANG S, HOMA D, et al. Dissolution and diffusion-based reactions within YBa2Cu3O7-x glass fibers[J]. Fibers, 2019, 8(1): 2.

[16] JCZMIONEK L, KUCHARSKI J, WASYLAK J. AIPO4-containing glass-crystalline materials in the system Li2O-Al2O3-P2O5[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1996, 100(9): 1453-1455.

[17] BYKOV V N, OSIPOV A A, ANFILOGOV V N. Structure of high-alkali aluminosilicate melts from the high-temperature Raman spectroscopic data[J]. Glass Physics and Chemistry, 2003, 29: 105-107.

[18] OSIPOV A A, OSIPOVA L M. Structure of glasses and melts in the Na2O-B2O3 system from high-temperature Raman spectroscopic data: Ⅱ. Superstructural units in melts[J]. Glass Physics and Chemistry, 2009, 35(2): 132-140.

[19] BIESINGER M C. Advanced analysis of copper X-ray photoelectron spectra[J]. Surface and Interface Analysis, 2017, 49(13): 1325-1334.

[20] 王海风, 徐桂香, 董芸谷, 等. 利用离子交换法制备高强载银抗菌玻璃及其性能测试[J]. 材料导报, 2020, 34(12): 12040-12044.

[21] 王 静, 王晓燕, 水中和, 等. 玻璃载银抗菌材料的Ag+溶出性质及与大肠杆菌作用机理[J]. 材料导报, 2018, 32(16): 2709-2714+2727.

[22] CHEN X D, CUI K P, HAI Z B, et al. Hydrothermal synthesis of Cu2O with morphology evolution and its effect on visible-light photocatalysis[J]. Materials Letters, 2021, 297: 129921.

[23] WANG Z, WANG J, IQBAL W, et al. Controllable fabrication and enhanced photocatalysis of Cu2O NP@g-C3N4 NT composite on visible-light-driven degradation of organic dyes in water[J]. Materials Today Sustainability, 2022, 20: 100239.

[24] THEKKAE PADIL V V, ERNK M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application[J]. International Journal of Nanomedicine, 2013, 8: 889-898.

[25] MULLIGAN A M, WILSON M, KNOWLES J C. The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis[J]. Biomaterials, 2003, 24(10): 1797-1807.

吴宇欣, 吕杰衡, 阮健, 田晨, 刘超, 韩建军. Cu2O纳米微晶玻璃的显微结构及性能研究[J]. 硅酸盐通报, 2023, 42(9): 3350. WU Yuxin, LYU Jieheng, RUAN Jian, TIAN Chen, LIU Chao, HAN Jianjun. Microstructure and Properties of Glass-Ceramics Containing Cu2O Nanocrystallines[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3350.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!