应用激光, 2023, 43 (3): 0068, 网络出版: 2024-01-27  

等离子体冲击波效应对飞秒激光烧蚀面齿轮形貌的影响研究

Effect of Plasma Shock Wave on Gear Morphology of Femtosecond Laser Ablation Surface
作者单位
1 湖北文理学院机械工程学院, 湖北 襄阳 441053
2 湖南工业大学机械工程学院, 湖南 株洲 412007
摘要
利用烧蚀阈值理论, 研究飞秒激光对面齿轮的烧蚀特征, 得到了面齿轮的烧蚀阈值。建立烧蚀模型, 计算仿真了飞秒激光在单脉冲与多脉冲烧蚀过程中的理论宽度与深度。利用等离子体冲击波传播半径随时间变化的规律, 耦合飞秒激光多脉冲烧蚀时的表面残余温度变化, 得到等离子体冲击波的动态反冲压力机理图, 并得到飞秒激光加工过程中, 等离子体冲击波动态反冲压力对烧蚀的凹坑形貌以及扫描隧道与烧蚀平面形貌变化的影响。通过试验验证飞秒激光对面齿轮进行隧道扫描时, 随着扫描速度的增加, 隧道的直线度降低。高功率条件下, 增加相邻扫描道扫描间距, 烧蚀后的齿面精度更高。
Abstract
Based on ablation threshold theory, the ablation characteristics of face gear with femtosecond laser are studied and the ablation threshold of face gear is obtained. The theoretical width and depth of femtosecond laser ablation in monopulse and multi-pulse ablation are calculated and simulated. The dynamic recoil pressure mechanism diagram of plasma shock wave is obtained by coupling the change of residual temperature of plasma surface with the change of propagation radius of plasma shock wave with the change of time. The influence of dynamic recoil pressure of plasma shock wave on the morphology of ablated pits, scanning tunnels and ablated planes during femtosecond laser processing are obtained. Experimental results show that the straightness of tunnel decreases with the increase of scanning speed when femtosecond laser scanning the opposite gear. Under the condition of high power, the accuracy of the ablated tooth surface is higher by increasing the spacing between adjacent scanning tracks. These results provide a reference for the influence of plasma dynamic recoil pressure on the surface accuracy of femtosecond laser machining of face gears under different parameters.
参考文献

[1] WANG S H, ZHOU Y S, TANG J Y, et al. Digital tooth contact analysis of face gear drives with an accurate measurement model of face gear tooth surface inspected by CMMs[J]. Mechanism and Machine Theory, 2022, 167: 104498.

[2] GUO H, ZHANG S Y, WU T P, et al. An approximate design method of grinding worm with variable meshing angle and grinding experiments of face gear[J]. Mechanism and Machine Theory, 2021, 166: 104461.

[3] DONG H, ZHANG H Q, ZHAO X L, et al. Study on dynamic load-sharing characteristics of face gear dual-power split transmission system with backlash, support and spline clearance[J]. Mechanical Sciences, 2021, 12(1): 573-587.

[4] SHIN S, PARK J K, KIM D H. Suppression of spallation induced nanoparticles by high repetition rate femtosecond laser pulses:Realization of precise laser material processing with high throughput[J]. Optics Express, 2021, 29(13): 20545-20557.

[5] ABDELMALEK A, GIAKOUMAKI A N, BHARADWAJ V, et al. Morphological study of nanostructures induced by direct femtosecond laser ablation on diamond[J]. Micromachines, 2021, 12(5): 583.

[6] SIMON J, NAMPOORIV P N, KAILASNATH M. Concentration dependent thermo-optical properties and nonlinear optical switching behavior of bimetallic Au-Ag nanoparticles synthesized by femtosecond laser ablation[J]. Optics & Laser Technology, 2021, 140: 107022.

[7] ZHAO Y, LIU H G, YU T B, et al. Fabrication of high hardness microarray diamond tools by femtosecond laser ablation[J]. Optics & Laser Technology, 2021, 140: 107014.

[8] ARMBRUSTER O, NAGHILOU A, KITZLER M, et al. Spot size and pulse number dependence of femtosecond laser ablation thresholds of silicon and stainless steel[J]. Applied Surface Science, 2017, 396: 1736-1740.

[9] 章君, 沈阳. 有限元模拟激光冲击波作用下薄膜零件的变形特性[J]. 应用激光, 2018, 38(2): 295-300.ZHANG J, SHEN Y. Finite element simulation of deformation characteristics of thin-film part under laser shock wave[J]. Applied Laser, 2018, 38(2): 295-300.

[10] 李博民, 刘新民, 张晖辉, 等. 铝合金激光冲击强化的三维数值模拟[J]. 应用激光, 2017, 37(6): 852-858.LI B M, LIU X M, ZHANG HH, et al. Numerical simulation of laser shock processing in 2024 aluminum alloy[J]. Applied Laser, 2017, 37(6): 852-858.

[11] WU Z H, ZHANG N, ZHU X N, et al. Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laserpulses[J]. Chinese Physics B, 2018, 27(7): 077901.

[12] ASHITKOV S I, ROMASHEVSKII S A, KOMAROV P S, et al. Formation of nanostructures under femtosecond laser ablation of metals[J]. Quantum Electronics, 2015, 45(6):547-550.

[13] 杨奇彪, 张弘, 周维, 等. 飞秒激光诱导硬质合金YG6表面累积效应[J]. 光子学报, 2019, 48(6): 76-82.YANG Q B, ZHANG H, ZHOU W, et al. Surface incubation effect of carbide YG6 induced by femtosecond laser[J].Acta Photonica Sinica, 2019, 48(6): 76-82.

[14] 王文君. 飞秒激光金属加工中的形状及形貌控制研究[D]. 西安: 西安交通大学, 2008.WANG W J. Study of shape and morphology control in femtosecond laser fabrication of metals[D]. Xi′an: Xi′an Jiaotong University, 2008.

[15] CHOI H W, FARSON D F, BOVATSEK J, et al. Direct-write patterning of indium-tin-oxide film by high pulse repetition frequency femtosecond laser ablation[J]. Applied Optics, 2007, 46(23): 5792-5799.

[16] 康小卫, 陈龙, 陈洁, 等. 大气环境下飞秒激光对铝靶烧蚀过程的研究[J]. 物理学报, 2016, 65(5): 205-211.KANG X W, CHEN L, CHEN J, et al. Femtosecond laser ablation of an aluminum target in air[J].Acta Physica Sinica, 2016, 65(5): 205-211.

[17] HOLT M. Similarity and dimensional methods in mechanics[M]. Academic Press, 1959

[18] 蔡颂, 陈根余, 周聪, 等. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用[J]. 物理学报, 2017, 66(13): 105-117.CAI S, CHEN G Y, ZHOU C, et al. Research and application of plasma recoil pressure physical model for pulsed laser ablation material[J].Acta Physica Sinica, 2017, 66(13): 105-117.

[19] PANCHATSHARAM S, TAN B, VENKATAKRISHNAN K. Femtosecond laser-induced shockwave formation on ablated silicon surface[J]. Journal of Applied Physics, 2009, 105(9): 093103.

明兴祖, 李学坤, 徐海军, 贾松权, 陈国华, 明瑞. 等离子体冲击波效应对飞秒激光烧蚀面齿轮形貌的影响研究[J]. 应用激光, 2023, 43(3): 0068. Ming Xingzu, Li Xuekun, Xu Haijun, Jia Songquan, Chen Guohua, Ming Rui. Effect of Plasma Shock Wave on Gear Morphology of Femtosecond Laser Ablation Surface[J]. APPLIED LASER, 2023, 43(3): 0068.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!