激光技术, 2022, 46 (5): 653, 网络出版: 2022-10-14   

TC4表层激光熔覆Fe基合金层组织及性能研究

Study on microstructure and properties of laser cladding Fe-based alloy layer on TC4 surface
作者单位
1 衢州职业技术学院 机电工程学院, 衢州324000
2 衢州学院 浙江省空气动力装备技术重点实验室, 衢州324000
摘要
为了提高TC4合金部件表面的耐磨耐腐蚀性, 采用数字化分析测试、金相显微形貌分析等方法, 研究分析了TC4钛合金表面激光熔覆制备Fe35A涂层的显微组织和综合性能。结果表明, 在激光功率为2.3kW、扫描速率为9mm/s、送粉速率为10g/min的最佳经验工艺参数下, TC4表层制备Fe基合金沉积层的宏观形貌最佳, 金相组织较好, 晶粒细化且均匀分布, 基体与沉积层熔合度高; 沉积层表面洛氏硬度高达40.2HRC, 显微硬度平均高达645.5HV, 沉积层整体力学性能明显高于基体组织。该研究为TC4钛合金表面的高质量修复和再利用提供了实践参考。
Abstract
In order to improve the wear resistance and corrosion resistance of TC4 alloy parts, the microstructure and comprehensive properties of laser cladding Fe35A coating on TC4 titanium alloy were analyzed through digital analysis and metallographic analysis. The results show that under the optimum parameters of laser power of 2.3kW, scanning speed of 9mm/s, and powder feeding rate of 10g/min, the best macro-morphology and good microstructure of the surface layer of TC4 is obtained. The Fe grain is refined, and the distribution is uniform. The high fusion degree between substrate and deposit is observed. The Rockwell hardness of the deposition layer is up to 40.2HRC, and the microhardness is up to 645.5HV. The overall mechanical properties of the deposition layer are obviously higher than that of the matrix. This research provides practical reference for the high quality repair and reuse of TC4 titanium alloy surface.
参考文献

[1] ZHANG F Y,ZHANG Zh H,QIU Y, et al. Investigation on process- ing of laser cladding deposition Ti40 burn-resistant titanium alloy on TC4 surface[J]. Hot Working Technology, 2018, 47(4): 1-7(in Chinese).

[2] ZHANG T G,SUN R L. Finite element analysis of crack in laser clad Ni60 coating on TC4 surface[J]. Heat Treatment of Metals,2018, 43(3): 190-194(in Chinese).

[3] TIAN H,DI L,NI D D, et al. Microstructure of laser cladding coating with pre-placed B4C and B4C+Ti powders on TC4 substrate[J]. Rare Metal Materials and Engineering,2007, 36(3): 420-420(in Chin-ese).

[4] SUN R L,LIU Y,YANG D Zh. Friction and wear properties of TiCp/Ni-based laser clad layer on TC4 alloy[J]. Tribology, 2003,52(6): 457-462(in Chinese).

[5] WU G G,WANG X G,ZHENG X, et al. Microstructure and properties of laser clad AlCoCrFeNiTi0.5 high-entropy alloy coating on TC4 surface[J]. Heat Treatment of Metals, 2019, 508(12): 9-13(in Chinese).

[6] MA Y.Microstructure and properties of Y2O3-doped laser cladded composite coating on TC4 titanium alloy[J]. Surface Technology, 2017, 46(6): 238-243(in Chinese).

[7] LIU D,CHEN Zh Y,CHEN K P, et al. Microstructure and wear resistance of laser clad composite coating on TC4 titanium alloy surface[J]. Heat Treatment of Metals, 2015,40(3): 58-62(in Chinese).

[8] ZHANG D Q,LIU X D,ZHANG W B, et al. Study on multilayer laser cladding process of TC4 titanium alloy[J]. Machinery Design & Manufacture,2016,58(9): 137-139(in Chinese).

[9] ZHENG L,LI D,HE Ch Ch, et al. Microstructure of Ti-Mo-Si coating laser cladding on titanium alloy[J]. Chinese Journal of Rare Metals, 2016, 40(2): 1094-1099(in Chinese).

[10] PACHECO J T, SILVA L, BARBETTA L D, et al. Laser cladding of stellite-6 on AISI 316L austenitic stainless steel: Empirical-statistical modeling and parameter optimization[J]. Lasers in Manufacturing and Materials Processing, 2020, 225(6): 1-14.

[11] MAJUMDAR J D. Direct laser cladding of cobalt on Ti-6Al-4V with a compositionally graded interface[J]. Journal of Materials Processing Technology, 2009, 209( 5): 2237-2243.

[12] SMUROV I, DOUBENSKAIA M, GRIGORIEV S, et al. Optical monitoring in laser cladding of Ti6Al4V[J]. Journal of Thermal Spray Technology, 2012, 21(6): 1357-1362.

[13] HE Y Y, LIU Y J, CHEN M, et al. Study on effect of laser scanning speed on microstructure and properties of cladding layer [J]. Laser Technology,2019, 43(2): 59-62(in Chinese).

[14] LIU M K, TANG H B, FANG Y L, et al. Wear resistance of laser clad TiC/Ti-Ti2Co coating on titanium alloy [J]. Laser Technology, 2011,35(4): 5-8.

[15] WANG L, CHEN Y P, CHENG D H, et al. Effect of quenching and superplastic deformation on microstructure evolution mechanism of TC4 alloy laser welded joint[J]. Transactions of Materials and Heat Treatment, 2020, 239(5): 182-187(in Chinese).

[16] ZHOU Y, QIAN L H, LIU T Y, et al. Microstructure and mechanical properties of lath martensite after cold rolling[J]. Materials Reports, 2020, 34(8): 8154-8158(in Chinese).

王胜, 邵思程, 毕少平, 刘文军, 吴军, 余文利. TC4表层激光熔覆Fe基合金层组织及性能研究[J]. 激光技术, 2022, 46(5): 653. WANG Sheng, SHAO Sicheng, BI Shaoping, LIU Wenjun, WU Jun, YU Wenli. Study on microstructure and properties of laser cladding Fe-based alloy layer on TC4 surface[J]. Laser Technology, 2022, 46(5): 653.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!